首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
神经网络与模式识别课程报告-卷积神经网络(CNN)算法的应用
】的更多相关文章
【神经网络与深度学习】卷积神经网络(CNN)
[神经网络与深度学习]卷积神经网络(CNN) 标签:[神经网络与深度学习] 实际上前面已经发布过一次,但是这次重新复习了一下,决定再发博一次. 说明:以后的总结,还应该以我的认识进行总结,这样比较符合我认知的习惯,而不是单纯的将别的地方的知识复制过来,这样并起不到好的总结效果.相反,如果能够将自己的体会写下来,当有所遗忘时还能顺着当时总结的认识思路,重新"辨识"起来,所以,要总结,而不要搬运知识. 起初并不理解卷积神经的卷积与结构是什么,后来通过了一个比较好的例子才对卷积神经网络有了初…
【神经网络与深度学习】卷积神经网络-进化史:从LeNet到AlexNet
[卷积神经网络-进化史]从LeNet到AlexNet 本博客是[卷积神经网络-进化史]的第一部分<从LeNet到AlexNet> 如需转载,请附上本文链接:http://blog.csdn.net/cyh_24/article/details/51440344 更多相关博客请猛戳:http://blog.csdn.net/cyh_24 本系列博客是对刘昕博士的<CNN的近期进展与实用技巧>的一个扩充性资料. 主要讨论CNN的发展,并且引用刘昕博士的思路,对CNN的发展作一个更加详细…
深度学习之卷积神经网络(CNN)
卷积神经网络(CNN)因为在图像识别任务中大放异彩,而广为人知,近几年卷积神经网络在文本处理中也有了比较好的应用.我用TextCnn来做文本分类的任务,相比TextRnn,训练速度要快非常多,准确性也比较高.TextRnn训练慢得像蜗牛(可能是我太没有耐心),以至于我直接中断了训练,到现在我已经忘记自己到底有没有成功训练一只TextRnn了. 卷积神经网络可以说是非常优美了,卷积操作(局部连接和权值共享)和池化操作,极大地减少了模型的参数,大大加快了模型训练的速度,才使得神经网络得以如此大规模的…
直白介绍卷积神经网络(CNN)【转】
英文地址:https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ 中文译文:http://mp.weixin.qq.com/s/X81gDdlXnte-H0lLEvsJGg 编译: Python开发者 - MentosZ 英文:ujjwalkarn.me http://blog.jobbole.com/113819/ 什么是卷积神经网络,它为何重要? 卷积神经网络(也称作 ConvNets 或 CNN)是神经网络的一种…
卷积神经网络CNN总结
从神经网络到卷积神经网络(CNN)我们知道神经网络的结构是这样的: 那卷积神经网络跟它是什么关系呢?其实卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统神经网络的一个改进.比如下图中就多了许多传统神经网络没有的层次. 卷积神经网络的层级结构 • 数据输入层/ Input layer • 卷积计算层/ CONV layer • ReLU激励层 / ReLU layer • 池化层 / Pooling layer • 全连接层 / FC layer 1.数据输入层该层要…
【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可以识别手写数字,我们要采用卷积神经网络CNN来进行别呢?CNN到底是怎么识别的?用CNN有哪些优势呢?我们下面就来简单分析一下.在讲CNN之前,为避免完全零基础的人看不懂后面的讲解,我们先简单回顾一下传统的神经网络的基本知识. 神经网络的预备知识 为什么要用神经网络? 特征提取的高效性.…
卷积神经网络(Convolutional Neural Network,CNN)
全连接神经网络(Fully connected neural network)处理图像最大的问题在于全连接层的参数太多.参数增多除了导致计算速度减慢,还很容易导致过拟合问题.所以需要一个更合理的神经网络结构来有效地减少神经网络中参数的数目.而卷积神经网络(Convolutional Neural Network,CNN)可以做到. 1. 卷积神经网络构成 图 1:卷积神经网络 输入层 整个网络的输入,一般代表了一张图片的像素矩阵.图 1中最左侧三维矩阵代表一张输入的图片,三维矩阵的长.宽代表了图…
【深度学习系列】卷积神经网络CNN原理详解(一)——基本原理
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可以识别手写数字,我们要采用卷积神经网络CNN来进行别呢?CNN到底是怎么识别的?用CNN有哪些优势呢?我们下面就来简单分析一下.在讲CNN之前,为避免完全零基础的人看不懂后面的讲解,我们先简单回顾一下传统的神经网络的基本知识. 神经网络的预备知识 为什么要用神经网络? 特征提取的高效性.…
卷积神经网络总结CNN【转载】
卷积神经网络CNN总结 从神经网络到卷积神经网络(CNN)我们知道神经网络的结构是这样的: 那卷积神经网络跟它是什么关系呢?其实卷积神经网络依旧是层级网络,只是层的功能和形式做了变化,可以说是传统神经网络的一个改进.比如下图中就多了许多传统神经网络没有的层次. 卷积神经网络的层级结构 • 数据输入层/ Input layer • 卷积计算层/ CONV layer • ReLU激励层 / ReLU layer • 池化层 / Pooling layer • 全连接层 / FC laye…
卷积神经网络CNN的原理(二)---公式推导
卷积神经网络与普通神经网络的区别在于,卷积神经网络包含多个由卷积层和池化层构成的特征抽取器.在卷积神经网络的卷积层中,一个神经元只与部分邻层神经元连接.在CNN的一个卷积层中,通常包含若干个特征平面(featureMap),每个特征平面由一些矩形排列的的神经元组成,同一特征平面的神经元共享权值,这里共享的权值就是卷积核.卷积核一般以随机小数矩阵的形式初始化,在网络的训练过程中卷积核将学习得到合理的权值.共享权值(卷积核)带来的直接好处是减少网络各层之间的连接,同时又降低了过拟合的风险.子采样也叫…