cnn中的fp和bp推导】的更多相关文章

昨天下午在单位从新推导了一遍fp和bp. 在整个网络的训练中,最关键的就是计算残差. 最后一层残差很容易,那么前面每一层的残差怎么计算呢? 总体来说,有多少权重就需要多少残差项来进行权重更新.每个权重系数的残差是和后面一层的残差关联的,怎么关联呢?…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由forrestlin发表于云+社区专栏 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷积层,在最近提出的卷积神经网络中越来越常见了,特别是在对抗生成神经网络(GAN)中,生成器网络中上采样部分就出现了转置卷积层,用于恢复减少的维数.那么,转置卷积层和正卷积层的关系和区别是什么呢,转置卷积层实现过程又是什么样的呢,笔者根据最近的预研项目总结出本文. 1. 卷积层和全连接层 在CNN提出…
神经网络的BP推导过程 下面我们从一个简单的例子入手考虑如何从数学上计算代价函数的梯度,考虑如下简单的神经网络,该神经网络有三层神经元,对应的两个权重矩阵,为了计算梯度我们只需要计算两个偏导数即可: 首先计算第二个权重矩阵的偏导数,即 首先需要在之间建立联系,很容易可以看到的值取决于,而,而又是由取sigmoid得到,最后,所以他们之间的联系可以如下表示: 按照求导的链式法则,我们可以先求对的导数,然后乘以对的导数,即 由于 不难计算 令 上式可以重写为 接下来仅需要计算即可,由于 忽略前面的…
参考:https://blog.csdn.net/kyang624823/article/details/78633897 卷积层 池化层反向传播: 1,CNN的前向传播 a)对于卷积层,卷积核与输入矩阵对应位置求积再求和,作为输出矩阵对应位置的值.如果输入矩阵inputX为M*N大小,卷积核为a*b大小,那么输出Y为(M-a+1)*(N-b+1)大小.  b)对于池化层,按照池化标准把输入张量缩小. c)对于全连接层,按照普通网络的前向传播计算. 2,CNN反向传播的不同之处: 首先要注意的是…
如果将彩色图像和灰度图像一起放进 CNN 中去,会是什么结果? 今天,坑爹的实验,我处理 SUN397 的时候,忘记去掉灰度图了,结果,利用微调后的 model 提取 feature,悲剧的发现,无论哪个图像,得到的 feature 都是一样的,卧槽,这不科学啊... 于是乎,就将其中的灰色图像扔掉后,继续微调,至今仍未 train 完毕,等吧,待会告诉你效果,不知道是不是这个原因导致的. --------------------------- 上午出了结果:VGG-16 的训练精度也比 Ale…
声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了"应该"二字 首先,通俗说一下,CNN的存在是为了解决两个主要问题: 1. 权值太多.这个随便一篇博文都能解释 2. 语义理解.全连接网络结构处理每一个像素时,其相邻像素与距离很远的像素无差别对待,并没有考虑图像内容的空间结构.换句话说,打乱图像像素的输入顺序,结果不变. 然后,CNN中的卷积核的一个重要特点是它是需要网络自己来学习的.这一点很简…
CNN中减少网络的参数的三个思想: 1) 局部连接(Local Connectivity) 2) 权值共享(Shared Weights) 3) 池化(Pooling) 局部连接 局部连接是相对于全连接来说的.全连接示意图如下: 比如说,输入图像为1000*1000大小,即输入层有1000*1000=10^6维,若隐含层与输入层的数目一样,也有10^6个,则输入层到隐含层的全连接参数个数为10^6 * 10^6=10^12,数目非常之大,基本很难训练. 一般认为人对外界的认知是从局部到全局的,而…
1. python 中 axis 参数直觉解释 网络上的解释很多,有的还带图带箭头.但在高维下是画不出什么箭头的.这里阐述了 axis 参数最简洁的解释. 假设我们有矩阵a, 它的shape是(4, 3), 如下: import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) # a.shape = (4, 3) 要做如下不同维度求和操作: # keepdims=True 保持了结果维度 s0 =…
CNN中,1X1卷积核到底有什么作用呢? https://www.jianshu.com/p/ba51f8c6e348 Question: 从NIN 到Googlenet mrsa net 都是用了这个,为什么呢? 发现很多网络使用了1X1卷积核,这能起到什么作用呢?另外我一直觉得,1X1卷积核就是对输入的一个比例缩放,因为1X1卷积核只有一个参数,这个核在输入上滑动,就相当于给输入数据乘以一个系数.不知道我理解的是否正确. Answer [ruirui_ICT]:我来说说我的理解,我认为1×1…
转载请注明处处: http://www.cnblogs.com/darkknightzh/p/9017854.html 参考网址: https://pytorch.org/docs/stable/nn.html?highlight=conv2d#torch.nn.Conv2d https://www.cnblogs.com/chuantingSDU/p/8120065.html https://blog.csdn.net/chaolei3/article/details/79374563 1x1…