0. 简单介绍 Pollard的\(\rho\)算法是John Pollard在1975年发明的,用于分解质因数[1].假定被分解的数为N,N的最小的质因数为\(p(p\ne N)\),那么该算法可以在\(O(\sqrt p *\alpha(N))\)的期望时间复杂度内将N分解为两个不是1的数的乘积,其中\(\alpha (N)\)是求解这两个数的最大公因数的时间复杂度,且该算法几乎不需要额外的空间 1. 核心思想 假设我们需要分解\(N=p*q\),其中p是N的一个非平凡因子,在模N的环境下生…