Spark on yarn配置项说明与优化整理】的更多相关文章

配置于spark-default.conf 1. #spark.yarn.applicationMaster.waitTries  5 用于applicationMaster等待Spark master的次数以及SparkContext初始化尝试的次数 (一般不用设置) 2.spark.yarn.am.waitTime 100s 3.spark.yarn.submit.file.replication 3 应用程序上载到HDFS的复制份数 4.spark.preserve.staging.fil…
大数据体系结构: Spark简介 Spark是整个BDAS的核心组件,是一个大数据分布式编程框架,不仅实现了MapReduce的算子map 函数和reduce函数及计算模型,还提供更为丰富的算子,如filter.join.groupByKey等.是一个用来实现快速而同用的集群计算的平台. Spark将分布式数据抽象为弹性分布式数据集(RDD),实现了应用任务调度.RPC.序列化和压缩,并为运行在其上的上层组件提供API.其底层采用Scala这种函数式语言书写而成,并且所提供的API深度借鉴Sca…
在YARN上运行Spark 在Spark0.6.0版本开始支持YARN模式,随后的版本在逐渐地完善. 在YARN上启动Spark 确保HADOOP_CONF_DIR或YARN_CONF_DIR属性的值已经指向了Hadoop集群的配置文件.Spark通常使用这些配置信息来向HDFS写入数据和连接到YARN资源管理器.这个目录下所有的文件将会被分发到YARN集群中,所以所有应用使用的容器都使用同样的配置.如果Java的系统属性或YARN没有管理的环境变量等配置,它们应该在Spark 的应用配置项中配…
问题:1. spark中yarn集群资源管理器,container资源容器与集群各节点node,spark应用(application),spark作业(job),阶段(stage),任务(task)之间的关系.2. 在yarn集群资源管理器下,提交一个spark应用之后,经过怎样的资源分配,最后为每个节点每个task分配具体内存资源,让其执行具体计算任务.需要详细分析其中的过程.1)资源管理器怎么合理分配分布式集群内存资源,各个节点又是如何具体为task分配内存.***2)当集群各节点内存资源…
软件环境: linux系统: CentOS6.7 Hadoop版本: 2.6.5 zookeeper版本: 3.4.8 主机配置: 一共m1, m2, m3这五部机, 每部主机的用户名都为centos 192.168.179.201: m1 192.168.179.202: m2 192.168.179.203: m3 m1: Zookeeper, Namenode, DataNode, ResourceManager, NodeManager, Master, Worker m2: Zooke…
本文主要参考: a. https://www.cnblogs.com/yy3b2007com/p/10934090.html 0. 说明 a. 关于spark源码会不定期的更新与补充 b. 对于spark源码的历史博文,也会不定期修改.增加.优化 c. spark源码对应的spark版本为2.4.1 1. 引导 该篇主要讲解执行spark-submit.sh脚本时将任务提交给Yarn阶段代码分析.其中spark的代码版本为2.4.1. (1) spark-submit的入口函数 一般提交一个sp…
参考: spark on yarn图形化任务监控利器:History-server帮你理解spark的任务执行过程 spark内存分配原理 yarn运行原理详解 task,executor,core等数目的关系 streaming优化记录…
spark on yarn运行时会加载的jar包有如下: spark-submit中指定的--jars $SPARK_HOME/jars下的jar包 yarn提供的jar包 spark-submit通过参数spark.driver/executor.extraClassPath指定的jar包 spark-submit指定的--jar 当使用如下的脚本提交应用时,会将应用本身的jar以及--jar指定的jar包上传到集群中. ./bin/spark-submit \ --class org.apa…
Spark on YARN的原理就是依靠yarn来调度Spark,比默认的Spark运行模式性能要好的多,前提是首先部署好hadoop HDFS并且运行在yarn上,然后就可以开始部署spark on yarn了,假设现在准备环境已经部署完毕,这里是在CDH 环境下部署Spark 除了上面的环境准备,安装Spark前,还应该保证Scala正常安装,基于Scala的情况下,就可以开始部署Spark了, 首先还是解压Spark,安装位置就是/bigdata/spark -bin-hadoop2..t…
参考原文:http://blog.javachen.com/2015/06/09/memory-in-spark-on-yarn.html?utm_source=tuicool 运行文件有几个G大,默认的spark的内存设置就不行了,需要重新设置.还没有看Spark源码,只能先搜搜相关的博客解决问题. 按照Spark应用程序中的driver分布方式不同,Spark on YARN有两种模式: yarn-client 模式. yarn-cluster模式.当在YARN上运行Spark作业,每个Sp…