HDU 3579 线性同余方程组】的更多相关文章

#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int MaxM=11; int a[MaxM],b[MaxM]; void exgcd(int a,int b,int &d,int &x,int &y){ if(b==0){ x=1; y=0; d=a; } else{ e…
题目大意: 给定一个N ,m 找到小于N的  对于i=1....m,满足  x mod ai=bi  的 x 的数量. 分析 先求出 同余方程组 的最小解x0,然后 每增加lcm(a1...,am)都会存在一个解,注意必须小于N 不能等于 代码: #include <iostream> #include <stdio.h> #include<string.h> #include<algorithm> #include<string> #inclu…
http://poj.org/problem?id=2891 题意:与中国剩余定理不同,p%ai=bi,此处的ai(i=1 2 3 ……)是不一定互质的,所以要用到的是同余方程组,在网上看到有人称为拓展中国剩余定理. 具体讲解可以看我昨天的博文:http://www.cnblogs.com/KonjakJuruo/p/5176417.html //poj2891 #include<cstdio> #include<cstdlib> #include<cstring> #…
同余方程组 例题1:pku2891Strange Way to Express Integers 中国剩余定理求的同余方程组mod 的数是两两互素的.然而本题(一般情况,也包括两两互素的情况,所以中国剩余定理成为了“时代的眼泪”)mod的数可能不是互素,所以要转换一下再求. P=b1(mod a1);  P / a1 ==?~~~~b1 P =b2(mod a2); P =b3(mod a3); …… P =bn(mod an); a1~an,b1~bn是给出来的. 解: 第一条:a1*x+b1…
Random Java中的Random类生成的是伪随机数,使用的是48-bit的种子,然后调用一个linear congruential formula线性同余方程(Donald Knuth的编程艺术的3.2.1节) 如果两个Random实例使用相同的种子,并且调用同样的函数,那么生成的sequence是相同的 也可以调用Math.random()生成随机数 Random实例是线程安全的,但是并发使用Random实例会影响效率,可以考虑使用ThreadLocalRandom变量. Random实…
标准同余方程组,只是在求出值后如果为0,应该输出Mi的Lcm: #include<iostream> #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> using namespace std; typedef long long LL; LL Ai[],Ri[]; LL gcd(LL a, LL b) { return b ? gcd(b,a%b) : a…
import random x=[str(random.randint(0, 5)) for i in range(10)] x_str=''.join(x) y=[str(random.randint(0, 5)) for i in range(100000000)] y_str=''.join(y) if x_str in y_str: print("共有多少:") print(y_str.count(x_str)) print('第一个出现位置') print(y_str.fin…
HDU 3579 Hello Kiki Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3107    Accepted Submission(s): 1157 Problem Description One day I was shopping in the supermarket. There was a cashier counti…
怎样求同余方程组?如: \[\begin{cases} x \equiv a_1 \pmod {m_1} \\ x \equiv a_2 \pmod {m_2} \\ \cdots \\ x \equiv a_n \pmod {m_n} \end{cases}\] 不保证 \(m\) 两两互素? 两两合并! 比方说 \[\begin{cases} x \equiv a_1 \pmod {m_1} \\ x \equiv a_2 \pmod {m_2} \\ \end{cases}\] 就是 \[…
http://acm.hdu.edu.cn/showproblem.php?pid=4686 当看到n为小于64位整数的数字时,就应该有个感觉,acm范畴内这应该是道矩阵快速幂 Ai,Bi的递推式题目已经给出, Ai*Bi=Ax*Bx*(Ai-1*Bi-1)+Ax*By*Ai-1+Bx*Ay*Bi-1+Ay*By AoD(n)=AoD(n-1)+AiBi 构造向量I{AoD(i-1),Ai*Bi,Ai,Bi,1} 初始向量为I0={0,A0*B0,A0,B0,1} 构造矩阵A{ 1,0,0,0,…