上一章我们编写了简单的 MapReduce 程序,掌握这些就能编写大多数数据处理的代码.但是 MapReduce 框架提供给用户的能力并不止如此,本章我们仍然以上一章 word count 为例,继续完善我们的数据处理代码.本章主要关注的重点包括三个部分: 1. 完整的 map / reduce 任务,完整的 map 任务除了 map 方法里的逻辑外,还包括任务运行前的准备工作以及任务结束后的清理工作,reduce 任务也一样 2. Counter 的作用,有时候为了统计程序运行中任务的状态,比…
上一章我们搭建了分布式的 Hadoop 集群.本章我们介绍 Hadoop 框架中的一个核心模块 - MapReduce.MapReduce 是并行计算模块,顾名思义,它包含两个主要的阶段,map 阶段和 reduce 阶段.每个阶段输入和输出都是键值对.map 阶段主要是对输入的原始数据做处理,按照 key-value 形式输出数据,输出的数据按照key是有序的.reduce 阶段的输入是 map 任务的输出,会对输入的数据会按照 key 做归并排序,使得输入 reduce 任务输入的 key…
HDFS简单介绍 HDFS全称是Hadoop Distribute File System,是一个能运行在普通商用硬件上的分布式文件系统. 与其他分布式文件系统显著不同的特点是: HDFS是一个高容错系统且能运行在各种低成本硬件上: 提供高吞吐量,适合于存储大数据集: HDFS提供流式数据访问机制. HDFS起源于Apache Nutch,现在是Apache Hadoop项目的核心子项目. HDFS设计假设和目标 硬件错误是常态 在数据中心,硬件异常应被视作常态而非异常态. 在一个大数据环境下,…
搭建Hadoop 2.x分布式集群 1.Hadoop集群角色分配 2.上传Hadoop并解压 在centos01中,将安装文件上传到/opt/softwares/目录,然后解压安装文件到/opt/modules/ cd /opt/softwares/ tar -zxf hadoop-2.9.2.tar.gz -C /opt/modules/ 3.配置环境变量 只需配置centos01节点即可,后续可通过远程复制. a.修改文件/etc/profile sudo nano /etc/profile…
本章来简单介绍下 Hadoop MapReduce 中的 Combiner.Combiner 是为了聚合数据而出现的,那为什么要聚合数据呢?因为我们知道 Shuffle 过程是消耗网络IO 和 磁盘IO 比较大的操作,如果我们能减少 Shuffle 过程的数据量,那就可以提升整个 MR 作业的性能.我在<大数据技术 - MapReduce的Shuffle及调优> 一文中写到 Shuffle 中会有两次调用 Combiner 的过程,有兴趣的朋友可以再翻回去看看.接下来我们还是以 WordCou…
1 大数据概述 大数据特性:4v volume velocity variety value 即大量化.快速化.多样化.价值密度低 数据量大:大数据摩尔定律 快速化:从数据的生成到消耗,时间窗口小,可用于生成决策的时间非常少:1秒定律,这和传统的数据挖掘技术有着本质区别(谷歌的dremel可以在1秒内调动上千台服务器处理PB级数据) 价值密度低,商业价值高 大数据影响: 对科学研究影响:出现科学研究第四方式数据(前三个分别是实验.理论.计算) 对思维方式影响:全样而非抽样.效率而非准确.相关而非…
在大数据处理以及分析中 SQL 的普及率非常高,几乎是每一个大数据工程师必须掌握的语言,甚至非数据处理岗位的人也在学习使用 SQL.今天这篇文章就聊聊 SQL 在数据分析中作用以及掌握 SQL 的必要性. SQL解决了什么问题 SQL的中文翻译为:结构化查询语言.这里面有三层含义:首先这是一门编程语言:其次,这是一门查询语言:最后,这是在结构化数据上做查询的语言.结构化数据就是数据库里的二维表,不了解数据库的读者可以把它看做 Excel 里面的表格.虽然 SQL可以解决查询问题,但是 SQL 并…
本篇文章内容来自2016年TOP100summitWalmartLabs实验室广告平台首席工程师.架构师粟迪夫的案例分享. 编辑:Cynthia 粟迪夫:WalmartLabs实验室广告平台首席工程师.架构师 在大数据平台架构设计.消息中间件.分布式系统等领域有丰富经验. 作为技术负责人,帮助多家企业搭建了大数据平台和分布式系统. 目前主导WMX大数据平台.广告效益分析系统和实时数据管道的开发. 导读:作为世界上最大的商品零售商,沃尔玛每天都投放大量的广告.产生大量的商品交易,生成大量数据,需要…
原文地址:https://blog.csdn.net/bingdata123/article/details/79927507 Google是大数据时代的奠基者,其大数据技术架构一直是互联网公司争相学习和 研究的重点,也是行业大数据技术架构的标杆和示范. 1.谷歌的数据中心 谷歌已经建立了世界上最快.最强大.最高质量的数据中心,它的8个主要数据中心都远离其位于加州山景城的总部,分别位于美国南卡罗来纳州的伯克利郡,爱荷华州的康瑟尔布拉夫斯,乔治亚州的道格拉斯郡,俄克拉荷马州的梅斯郡,北卡罗来纳州的…
  第1章 大数据概论 1.1 大数据概念 大数据概念如图2-1 所示. 图2-1 大数据概念 1.2 大数据特点(4V) 大数据特点如图2-2,2-3,2-4,2-5所示 图2-2 大数据特点之大量 图2-3 大数据特点之高速 图2-4 大数据特点之多样 图2-5 大数据特点之低价值密度 1.3 大数据应用场景 大数据应用场景如图2-6,2-7,2-8,2-9,2-10,2-11所示 图2-6 大数据应用场景之物流仓储 图2-7 大数据应用场景之零售 图2-8 大数据应用场景之旅游 图2-9…