首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Luogu4916 魔力环 莫比乌斯反演、组合、生成函数
】的更多相关文章
Luogu4916 魔力环 莫比乌斯反演、组合、生成函数
传送门 先不考虑循环同构的限制,那么对于一个满足条件的序列,如果它的循环节长度为\(d\),那么与它同构的环在答案中就会贡献\(d\)次. 所以如果设\(f_i\)表示循环节长度恰好为\(i\)的满足条件的序列个数(不考虑循环同构),那么最后的答案就是\(\sum \frac{f_i}{i}\). 所以问题变成了如何求\(f_i\).注意到\(f_i\)直接求不是很好求,考虑计算\(cnt(\frac{n}{d} , \frac{m}{d})\)表示珠子数为\(\frac{n}{d}\).黑色珠…
【51nod】1222 最小公倍数计数 莫比乌斯反演+组合计数
[题意]给定a和b,求满足a<=lcm(x,y)<=b && x<y的数对(x,y)个数.a,b<=10^11. [算法]莫比乌斯反演+组合计数 [题解]★具体推导过程参考:51nod1222 最小公倍数计数 过程运用到的技巧: 1.将所有i和j的已知因子提取出来压缩上届. 2.将带有μ(k)的k提到最前面,从而后面变成单纯的三元组形式. 最终形式: $$ans=\sum_{k=1}^{\sqrt n} \mu(k) \sum_{d} \sum_{i} \s…
LOJ6519. 魔力环(莫比乌斯反演+生成函数)
题目链接 https://loj.ac/problem/6519 题解 这里给出的解法基于莫比乌斯反演.可以用群论计数的相关方法代替莫比乌斯反演,但两种方法的核心部分是一样的. 环计数的常见套路就是将环视为序列.我们统计所有不同的序列,那么对于最小循环节长度为 \(d\) 的序列对应的环就会被统计 \(d\) 次.因此假设最小循环节长度为 \(x\) 的合法序列数为 \(f(x)\),那么答案即为 \(\sum_\limits{d | {\rm gcd}(n, m)} \frac{1}{d}f(…
[jzoj 6084] [GDOI2019模拟2019.3.25] 礼物 [luogu 4916] 魔力环 解题报告(莫比乌斯反演+生成函数)
题目链接: https://jzoj.net/senior/#main/show/6084 https://www.luogu.org/problemnew/show/P4916 题目: 题解: 注:本题解大部分摘自Imagine大佬提供在洛谷的题解 我们设$f(x)$表示最小循环节长度为x的合法序列数,那么有$ans=\sum_{d|gcd(n,m)}\frac{1}{d}f(d)$ 这是因为最小循环节为d的序列对应的环会被计算d次,比如 0101,最小循环节长度为 2(循环节为 01),其对…
bzoj 2440 简单莫比乌斯反演
题目大意: 找第k个非平方数,平方数定义为一个数存在一个因子可以用某个数的平方来表示 这里首先需要考虑到二分才可以接下来做 二分去查找[1 , x]区间内非平方数的个数,后面就是简单的莫比乌斯反演了 容斥原理的思想,首先考虑所有数都属于非平方数 那么就是x 然后对于每一个平方数都要减去,但是这里应该只考虑质数的平方数就可以了 那么就扩展为x - x/(2^2) - x/(3^2) - x/(k^2).... 然后因为中间存在重复减的那么要加回来 -> x - x/(2^2) - x/(3^3) …
hdu 1695 GCD 莫比乌斯反演入门
GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= d使得gcd(p,q) = k; 注:对于(p,q)和(q,p)只算一次: 思路:由于遍历朴素求两个数的gcd的时间复杂度为O(n^2*log(n)),朴素算法遍历搜索在判断累加,所以效率很低: 资料 NanoApe's Blog ACdreamers 莫比乌斯反演:利用整与分之间的可逆来由整体利用…
洛谷P3307 [SDOI2013]项链 [polya定理,莫比乌斯反演]
传送门 思路 很明显的一个思路:先搞出有多少种珠子,再求有多少种项链. 珠子 考虑这个式子: \[ S3=\sum_{i=1}^a \sum_{j=1}^a\sum_{k=1}^a [\gcd(i,j,k)==1] \] 显然可以莫比乌斯反演一波,但这个是对的吗? 当有两个数字相同时只被算了3遍,而三个都相同的只被算了一遍. \[ S2=\sum_{i=1}^a\sum_{j=1}^a [\gcd(i,j)==1] \] 显然有\(S1=1\),那么就会得到最终答案: \[ ans=\frac…
Coprime (单色三角形+莫比乌斯反演(数论容斥))
这道题,先说一下单色三角形吧,推荐一篇noip的论文<国家集训队2003论文集许智磊> 链接:https://wenku.baidu.com/view/e87725c52cc58bd63186bd1b.html?from=search 单色三角形指的是n个顶点,有n(n-1)条边,很明显是每个点两两相连,那么这样所形成的所有三角形的边假如有两种颜色:红和黑.那么问一共有多少三角形的三边是一种颜色的个数. ,建议看一下那个论文,因为我只能直接给出你结论. 下面的数学符号:{...}为概率论中表…
HDU 5321 Beautiful Set (莫比乌斯反演 + 逆元 + 组合数学)
题意:给定一个 n 个数的集合,然后让你求两个值, 1.是将这个集合的数进行全排列后的每个区间的gcd之和. 2.是求这个集合的所有的子集的gcd乘以子集大小的和. 析:对于先求出len,len[i]表示能够整除 i 的的个数. 第一个值,根据排列组合,求出gcd是 i 的倍数的个数, 解释一下这个式子,先从len[i]中选出 j 个数,然后进行排列,这就是所选的区间,然后再把这 j 个数看成一个大元素,再和其他的进行排列,也就是(n-j+1)!,总体也就是排列组合. 对于第二个值, 这个式子应…
BZOJ 3309 莫比乌斯反演
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3309 题意:定义f(n)为n所含质因子的最大幂指数,求 $Ans=\sum _{i=1}^{a}\sum_{j=i}^{b}f(gcd(i,j))$ T<=10000 1<=a,b<=10^7 解析:考虑a<b 枚举最大公约数d,得到: $$Ans=\sum_{d=1}^a f(d)\sum_{i=1}^{\lfloor\frac{a}{d}\rfloor}\sum_{j…