SGD 讲解,梯度下降的做法,随机性.理解反向传播 待办 Stochastic Gradient Descent 随机梯度下降没有用Random这个词,因为它不是完全的随机,而是服从一定的分布的,只是具有随机性在里面. 其中的Stochastic的意思是从x到y的映射: x→yx\to y x→y 给定一个xxx并不能确定地知道输出yyy,而是服从一定的概率分布. 与之对应的是Deterministic这个词,它表示从xxx到yyy的映射是确定的: y=f(x)y=f(x) y=f(x) 具体地…
 100天搞定机器学习(Day1-34) 100天搞定机器学习|Day35 深度学习之神经网络的结构 100天搞定机器学习|Day36 深度学习之梯度下降算法 本篇为100天搞定机器学习之第37天,亦为3Blue1Brown<深度学习之反向传播算法>学习笔记. 上集提到我们要找到特定权重和偏置,从而使代价函数最小化,我们需要求得代价函数的负梯度,它告诉我们如何改变连线上的权重偏置,才能让代价下降的最快.反向传播算法是用来求这个复杂到爆的梯度的. 上一集中提到一点,13000维的梯度向量是难以想…
曾经学习machine learning,在regression这一节,对求解最优化问题的梯度下降方法,理解总是处于字面意义上的生吞活剥. 对梯度的概念感觉费解?到底是标量还是矢量?为什么沿着负梯度方向函数下降最快?想清楚的回答这些问题.还真须要点探究精神. 我查阅了一些经典的资料(包含wiki百科),另一些个人的博客,比方p=2573">http://www.codelast.com/?p=2573,http://blog.csdn.net/xmu_jupiter/article/det…
http://colah.github.io/posts/2015-08-Backprop/ http://www.zhihu.com/question/27239198 待翻译 http://blog.csdn.net/woxincd/article/details/7040944 对于我们的函数J(θ)求偏导J: 下面是更新的过程,也就是θi会向着梯度最小的方向进行减少.θi表示更新之前的值,-后面的部分表示按梯度方向减少的量,α表示步长,也就是每次按照梯度减少的方向变化多少.  一个很重要…
随机梯度下降 几乎所有的深度学习算法都用到了一个非常重要的算法:随机梯度下降(stochastic gradient descent,SGD) 随机梯度下降是梯度下降算法的一个扩展 机器学习中一个反复出现的问题: ​ 好的泛化需要大的训练集,但是大的训练集的计算代价也更大 机器学习算法中的代价函数通常可以分解成每个样本的代价函数的总和. 训练数据的负条件对数似然函数可以写成: \[ J(\theta)=E_{x,y}L(x,y,\theta)=\frac1m\sum_{i=1}^{m}L(x^{…
深度学习 (DeepLearning) 基础 [3]---梯度下降法 Introduce 在上一篇"深度学习 (DeepLearning) 基础 [2]---神经网络常用的损失函数"中我们介绍了神经网络常用的损失函数.本文将继续学习深度学习的基础知识,主要涉及基于梯度下降的一类优化算法.首先介绍梯度下降法的主要思想,其次介绍批量梯度下降.随机梯度下降以及小批量梯度下降(mini-batch)的主要区别. 以下均为个人学习笔记,若有错误望指出. 梯度下降法 主要思想:沿着梯度反方向更新相…
反向传播和梯度下降这两个词,第一眼看上去似懂非懂,不明觉厉.这两个概念是整个神经网络中的重要组成部分,是和误差函数/损失函数的概念分不开的. 神经网络训练的最基本的思想就是:先“蒙”一个结果,我们叫预测结果a,看看这个预测结果和事先标记好的训练集中的真实结果y之间的差距,然后调整策略,再试一次,这一次就不是“蒙”了,而是有依据地向正确的方向靠近.如此反复多次,一直到预测结果和真实结果之间相差无几,亦即|a-y|->0,就结束训练. 在神经网络训练中,我们把“蒙”叫做初始化,可以随机,也可以根据以…
函数凸凹性: 用到的范数知识: 详细解释:每一个元素的平方再开方.补充损失函数: Huber Loss知识点 loss函数可以通过loss参数进行设置.SGDRegressor支持以下的loss函数: SGD:随机梯度下降四个损失函数: 事例代码: import numpy as np import matplotlib.pyplot as plt np.random.seed(0) #随机数种子 #构造训练数据,这个数据不包括x0; x=np.arange(0,10,0.2) #生成50个样本…
前言 上一篇中介绍了计算图以及前向传播的实现,本文中将主要介绍对于模型优化非常重要的反向传播算法以及反向传播算法中梯度计算的实现.因为在计算梯度的时候需要涉及到矩阵梯度的计算,本文针对几种常用操作的梯度计算和实现进行了较为详细的介绍.如有错误欢迎指出. 首先先简单总结一下, 实现反向传播过程主要就是完成两个任务: 实现不同操作输出对输入的梯度计算 实现根据链式法则计算损失函数对不同节点的梯度计算 再附上SimpleFlow的代码地址: https://github.com/PytLab/simp…
作者:寒小阳 时间:2015年12月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50321873 声明:版权所有,转载请联系作者并注明出处 1. 引言 其实一开始要讲这部分内容,我是拒绝的,原因是我觉得有一种写高数课总结的感觉.而一般直观上理解反向传播算法就是求导的一个链式法则而已.但是偏偏理解这部分和其中的细节对于神经网络的设计和调整优化又是有用的,所以硬着头皮写写吧. 问题描述与动机: 大家都知道的,其实我们就是在给定的图像像…