秦曾昌人工智能课程---6.Decision Tree Learning 一.总结 一句话总结: 怎样去构建决策树:比如一维:***|00|***|000|***,|为分割线,每个分割点都是一种情况,选一个分割点,然后再选下一个分割点,即可构成二叉树 决策树是机器学习中最简单的算法 1.机器学习的决策树算法中怎么构建决策树? 熵越小信息越有序:把不相干的点划分开,比如***00|***000***,|为分割线 一维表现:***|00|***|000|***,|为分割线,每个分割点都是一种情况,选…
秦曾昌人工智能课程---7.决策树集成学习Tree Ensembles 一.总结 一句话总结: 其实机器模型减少variance的比较好的方式就是 多个模型取平均值 1.CART是什么? classification and regression tree 2.决策树模型的本质是什么? divide the input space into a few regions 3.我们如何用决策树去做预测? 信息不同属性按重要性依次下分:先划分x1的范围,这就形成了一个二叉树分支,再划分x2的范围,就形…
秦曾昌人工智能课程---5.KNN和朴素贝叶斯 一.总结 一句话总结: 拟合和概率:构建机器学习模型,一般有拟合和概率两种方式 轻学无用:一定要保证学有所用,要深入学习,比如之前做的安卓,一定要学通,不然真的没用,完全浪费时间 1.参数模型(Parametric model)是什么? 通过结构化表达式和参数集表示的模型 参数模型(Parametric model)一类可以通过结构化表达式和参数集表示的模型.参数模型是以代数方程.微分方程.传递函数等形式表达的,或采用机抑方法建立的模型. 2.非参…
http://spark.apache.org/docs/latest/mllib-decision-tree.html 以决策树作为开始,因为简单,而且也比较容易用到,当前的boosting或random forest也是常以其为基础的 决策树算法本身参考之前的blog,其实就是贪婪算法,每次切分使得数据变得最为有序   那么如何来定义有序或无序? 无序,node impurity 对于分类问题,我们可以用熵entropy或Gini来表示信息的无序程度 对于回归问题,我们用方差Variance…
Decision Tree:Analysis 大家有没有玩过猜猜看(Twenty Questions)的游戏?我在心里想一件物体,你可以用一些问题来确定我心里想的这个物体:如是不是植物?是否会飞?能游泳不?当你问完这些问题后,你就能得到这个物体的特征,然后猜出我心里想象的那个物体,看是否正确. 这个游戏很简单,但是蕴含的思想却是质朴的.每个问题都会将范围减少,直到特征显现,内蕴的思想就是Decision Tree算法.判定树(Decision Tree)算法是机器学习中很重要的一种算法,有文章声…
After talking about Information theory, now let's come to one of its application - Decision Tree! Nowadays, in terms of prediction power, there are many ensemble methods based on tree that can beat Decision Tree generally. However I found it necessar…
Decision Tree builds classification or regression models in the form of a tree structure. It break down dataset into smaller and smaller subsets while an associated decision tree in incrementally developed at the same time. Decision Tree learning use…
将Adaboost和decision tree相结合,需要注意的地主是,训练时adaboost需要改变资料的权重,如何将有权重的资 料和decision tree相结合呢?方法很类似于前面讲过的bagging,通过采样资料来使资料获得不同的权重. 一棵完全的树的权值会无限大,可能出现过拟合.因此需要得到一棵弱分类的树,方法如下: 接下来比较深入的分析adaboost.经过代换,出现了如下惊人的结果: 某个资料的权重正比于投票分数 联系到之前学习的SVM,发现了一个秘密:投票的分数就是某个点到分隔…
本文主要基于台大林轩田老师的机器学习技法课程中关于使用融合(aggregation)方法获得更好性能的g的一个总结.包含从静态的融合方法blending(已经有了一堆的g,通过uniform:voting/average.non-uniform:linear/non-linear和condition的融合形式来获取更好地性能).动态融合方法learning(没有一堆的g set,而是通过online learning获取g,边学习g,变边进行融合,对照于blending中的uniform融合形式…
Decision Tree 及实现 标签: 决策树熵信息增益分类有监督 2014-03-17 12:12 15010人阅读 评论(41) 收藏 举报  分类: Data Mining(25)  Python(24)  Machine Learning(46)  版权声明:本文为博主原创文章,未经博主允许不得转载. 本文基于python逐步实现Decision Tree(决策树),分为以下几个步骤: 加载数据集 熵的计算 根据最佳分割feature进行数据分割 根据最大信息增益选择最佳分割feat…