线性推概率——cf1009E好题!】的更多相关文章

依次求每一段公里的期望消耗即可,这是可以递推的 dp[i]表示每公里的期望消耗 dp[i]=1/2*a1+1/4*a2 +...+1/2^(i-1)*ai-1 + 1/2^(i-1)*ai注意最后一项是没有间断的道路的期望虽然是算期望,但是实际上是算概率概率从1到n递推即可 #include<bits/stdc++.h> using namespace std; #define ll long long ; ; int n; ll a[maxn],dp[maxn],P[maxn]; int m…
2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec Memory Limit: 259 MB Submit: 2417 Solved: 803 [Submit][Status][Discuss] Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票.房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量.现在,请你帮助沙拉公主解决这个问题,由于可能张数非…
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=33059 [思路] 递推+概率. 设f[i]表示一只Tribble经过i天之后死绝的概率,则有递推式: f[i]=p[0]+p[1]*(f[i-1]^1)+…p[n-1]*(f[i-1]^n-1) 最后答案为f[m]^k [代码] #include<cstdio> #include<cstring> #define FOR(a,b,c) for(int…
转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud The number of steps Time Limit: 1 Sec  Memory Limit: 128 M Description Mary stands in a strange maze, the maze looks like a triangle(the first layer have one room,the second layer have two ro…
剑指Offer--网易校招内推笔试题+模拟题知识点总结 前言 2016.8.2 19:00网易校招内推笔试开始进行.前天晚上利用大约1小时时间完成了测评(这个必须做,关切到你能否参与面试).上午利用2小时时间做了下模拟题,模拟题中编程题占用时间比较多,可以先在自己电脑中的IDE编程测试.待测试完成后再将代码拷贝至OJ,运行所给测试案例.考察的知识点范围比较广泛,设计操作系统,Linux.java多线程.网络编程等.模拟题主要考查知识点如下(可能存在遗漏某些知识点的情况): 1.求给出叶子节点时哈…
除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃圾,大哥拿来了一袋老鼠,其中有w只白老鼠和b只黑老鼠.胡小兔先抓,先抓到白老鼠的人赢. 每次学姐抓完老鼠之后,总会有另外一只老鼠从袋子里自己跑出来(这只老鼠不算任何人抓的),而胡小兔抓老鼠时则不会发生这样的事. 每次袋子里的每只老鼠被抓到的概率相等,当有一只老鼠跑出来的时候,每只老鼠跑出来的几率也相…
题目大意: 给定n,m,求有多少组(a,b) 0<a<=n , 0<b<=m , 使得gcd(a,b)= p , p是一个素数 这里本来利用枚举一个个素数,然后利用莫比乌斯反演可以很方便得到答案,但是数据量过大,完全水不过去 题目分析过程(从别人地方抄来的) ans = sigma(p, sigma(d, μ(d) * (n/pd) * (m/pd))) Let s = pd, then ans = sigma(s, sigma(p, μ(s/p) * (n/s) * (m/s))…
链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网址:blog.csdn.net/vmurder/article/details/46468557"); } 题解: 并没有什么卵用,首先有一个神思路.然后神推公式.以下这篇博客写得非常详尽..另外题意是买第 i 次花 i 元,不是标号为 i 的邮票花 i 元. <strong">…
题面 传送门 题解 把\(a_i\)和\(b_i\)都变成小数的形式,记\(f_i\)表示\(1\)单位的光打到第\(i\)个玻璃上,能从第\(n\)个玻璃下面出来的光有多少,记\(g_i\)表示能从第\(i\)块玻璃反射出来的光有多少,,递推式的话,我们枚举一下这束光在\(i\)和\(i+1\)块玻璃之间反射了几次就可以了 \[ \begin{aligned} f_i &=a_i\left(f_{i+1}+g_{i+1}\times b_i\times f_{i+1}+g_{i+1}\time…
k=1的话非常好做,每个有1的位都有一半可能性提供贡献.由组合数的一些性质非常容易证明. k=2的话,平方的式子展开可以发现要计算的是每一对位提供的贡献,于是需要计算每一对位被同时选中的概率.找出所有存在的相互绑定的位,这些位被同时选择的概率为0.5,而不被绑定的则为0.25. 对于k>=3,其实用与k=1,2相同的方法大力讨论也可以做.考虑更优美的做法.有一个性质:集合内数相互异或不影响答案.证明比(bing)较(bu)显(hui)然(xie).于是构造出线性基.可以发现线性基里的元素很少,暴…