一.Introduction Perceptron can represent AND,OR,NOT 用初中的线性规划问题理解 异或的里程碑意义 想学的通透,先学历史! 据说在人工神经网络(artificial neural network, ANN)发展初期,由于无法实现对多层神经网络(包括异或逻辑)的训练而造成了一场ANN危机,到最后BP算法的出现,才让训练带有隐藏层的多层神经网络成为可能.因此异或的实现在ANN的发展史是也是具有里程碑意义的.异或之所以重要,是因为它相对于其他逻辑关系,例如…
反向传播算法(Back Propagation)分二步进行,即正向传播和反向传播.这两个过程简述如下: 1.正向传播 输入的样本从输入层经过隐单元一层一层进行处理,传向输出层:在逐层处理的过程中.在输出层把当前输出和期望输出进行比较,如果现行输出不等于期望输出,则进入反向传播过程. 2.反向传播 反向传播时,把误差信号按原来正向传播的通路反向传回,逐层修改连接权值,以望代价函数趋向最小. 下面以单隐层的神经网络为例,进行权值调整的公式推导,其结构示意图如下: 输入层输入向量(n维):X=(x1,…
最近在看<Neural Network Design_Hagan> 然后想自己实现一个XOR 的网络. 由于单层神经网络不能将异或的判定分为两类. 根据 a^b=(a&~b)|(~a&b) 而 我试了一下 或 和 与 都可以用感知神经元解决,也就是一个. 那么与和或的实现: hardlim (n )=a ,n>=0时 a=1;n<0时a=0: 显然需要三个神经元 神经元表达式如下: int fun(int w[],int x[],int b) { return w[…
# ---------- # # There are two functions to finish: # First, in activate(), write the sigmoid activation function. # Second, in update(), write the gradient descent update rule. Updates should be # performed online, revising the weights after each da…
http://blog.sina.com.cn/s/blog_98238f850102w7ik.html 目前所有的ANN神经网络算法大全 (2016-01-20 10:34:17) 转载▼ 标签: it   概述 1 BP神经网络 1.1 主要功能 1.2 优点及其局限性 2 RBF(径向基)神经网络 2.1 主要功能 2.2 优点及其局限性 3 感知器神经网络 3.1 主要功能 3.2 优点及其局限性 4 线性神经网络 4.1 主要功能 4.2优点及其局限性 5自组织神经网络 5.1 自组织…
注:在吴恩达老师讲的[机器学习]课程中,最开始介绍神经网络的应用时就介绍了含有一个隐藏层的神经网络可以解决异或问题,而这是单层神经网络(也叫感知机)做不到了,当时就觉得非常神奇,之后就一直打算自己实现一下,一直到一周前才开始动手实现.自己参考[机器学习]课程中数字识别的作业题写了代码,对于作业题中给的数字图片可以达到95%左右的识别准确度.但是改成训练异或的网络时,怎么也无法得到正确的结果.后来查了一些资料才发现是因为自己有一个参数设置的有问题,而且学习率过小,迭代的次数也不够.总之,异或逻辑的…
ANN-- Artificial Neural Networks 人工神经网络 //定义人工神经网络 CvANN_MLP bp; // Set up BPNetwork's parameters CvANN_MLP_TrainParams params; params.train_method=CvANN_MLP_TrainParams::BACKPROP; params.bp_dw_scale=0.1; params.bp_moment_scale=0.1; //params.train_me…
上面只显示代码. 详BP原理和神经网络的相关知识,请参阅:神经网络和反向传播算法推导 首先是前向传播的计算: 输入: 首先为正整数 n.m.p.t,分别代表特征个数.训练样本个数.隐藏层神经元个数.输出 层神经元个数. 当中(1<n<=100,1<m<=1000, 1<p<=100, 1<t<=10). 随后为 m 行,每行有 n+1 个整数.每行代表一个样本中的 n 个特征值 (x 1 , x 2 ,..., x n ) 与样本的 实际观測结果 y.特征值…
我的脑回路可能比较奇怪. 我们对这些询问离线,将所得序列${a}$的后缀和建$n$棵可持久化$trie$. 对于一组询问$(l,r,x)$,我们在主席树上询问第$l$棵树$-$第r$+1$棵树中与$suma[n']\ xor\ x$异或的最大值即可. 这个时间复杂度是$O(n\ log\ a)$的. #include<bits/stdc++.h> #define M 600005 using namespace std; ],sum=;}a[M*]; },use=; void updata(i…
题目地址:https://files.cnblogs.com/files/nul1/flag_enc.png.tar 这题是源于:网鼎杯minified 经过测试隧道红色最低通道异常.其余均正常.所以判断极可能为xor xor原理是啥就不讲了.就是photo1.png^photo2.png 将别保存.然后使用StegSolve自带的Image Combiner进行xor处理. 最终使用Alpha Plane0和Green Plane0进行异或的时候得到Flag 但是在测试当中我发现这样的一个状况…