Bellman-Ford算法——解决负权边】的更多相关文章

Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力不从心了,而Bellman - Ford算法可以解决这种问题. Bellman - Ford 算法可以处理路径权值为负数时的单源最短路径问题.设想可以从图中找到一个环路且这个环路中所有路径的权值之和为负.那么通过这个环路,环路中任意两点的最短路径就可以无穷小下去.如果不处理这个负环路,程序就会永远运…
Dijkstra算法虽然好,但是它不能解决带有负权边(边的权值为负数)的图. 接下来学习一种无论在思想上还是在代码实现上都可以称为完美的最短路径算法:Bellman-Ford算法. Bellman-Ford算法非常简单,核心代码四行,可以完美的解决带有负权边的图. ;k<=n-;k++) //外循环循环n-1次,n为顶点个数 ;i<=m;i++)//内循环循环m次,m为边的个数,即枚举每一条边 if(dis[v[i]]>dis[u[i]]+w[i])//尝试对每一条边进行松弛,与Dijk…
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G运行Bellman—Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路.若存在负权回路,单源点最短路径问题无解:若不存在这样的回路,算法将给出从源点s到图G的任意顶点v的最短路径值d[v] Bellman—Ford算法流程 分为三个阶段:       (1)初始化:将除源点…
Going Home Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 5539    Accepted Submission(s): 2907 Problem Description On a grid map there are n little men and n houses. In each unit time, every l…
Bellman-Ford 可解决带有负权边的最短路问题 解决负权边和Dijkstra相比是一个优点,Bellman-Ford的核心代码只有4行:: u[],v[],w[] 分别存一条边的顶点.权值,dis[]存从 1 源点到各个顶点的距离 ;i<=n-;i++) ;j<=m;j++) if(dis[v[j]] > dis[u[j]]+w[j]) dis[v[j]] = dis[u[j]]+w[j]; 愿过程: 循环n-1次,把每个顶点每条边都松弛: 优化方法: ①,最坏的情况就是循环了n…
# Bellman-Ford核心算法 # 对于一个包含n个顶点,m条边的图, 计算源点到任意点的最短距离 # 循环n-1轮,每轮对m条边进行一次松弛操作 # 定理: # 在一个含有n个顶点的图中,任意两点之间的最短路径最多包含n-1条边 # 最短路径肯定是一个不包含回路的简单路径(回路包括正权回路与负权回路) # 1. 如果最短路径中包含正权回路,则去掉这个回路,一定可以得到更短的路径 # 2. 如果最短路径中包含负权回路,则每多走一次这个回路,路径更短,则不存在最短路径 # 因此最短路径肯定是…
Bellman-Ford算法非常简单,核心代码四行,可以完美的解决带有负权边的图. for(k=1;k<=n-1;k++) //外循环循环n-1次,n为顶点个数 for(i=1;i<=m;i++)//内循环循环m次,m为边的个数,即枚举每一条边 if(dis[v[i]]>dis[u[i]]+w[i])//尝试对每一条边进行松弛,与Dijkstra算法相同 dis[v[i]]=dis[u[i]]+w[i]; 上面的代码中,外循环一共循环了n-1次(n为顶点的个数),内循环循环了m次(m为边…
题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, s…
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能更新点的权值,则说明有负环的存在. #include <stdio.h> #include <string.h> #define min(a,b) (a)<(b)?(a):(b) const int N = 10005; const int INF = 0x3f3f3f3f; i…
我们先看一下负权环为什么这么特殊:在一个图中,只要一个多边结构不是负权环,那么重复经过此结构时就会导致代价不断增大.在多边结构中唯有负权环会导致重复经过时代价不断减小,故在一些最短路径算法中可能会凭借不断重复经过负权环来得到权和为无穷小的最短路径,但因重复经过边不符合简单路径的定义导致这些算法跑最短路时要避免有负权环的出现. 这类算法说的就是Bellman-ford以及基于它进行优化的spfa了.由于负权环的出现导致这些算法的正确性失效.但这世上没有绝对的废物,我们也可以反过来利用这两种算法对负…