vue3 最长递增子序列 diff优化】的更多相关文章

//vue3优化版(回头我会完善下算法思路) function getSequence(arr) { const p = arr.slice() const result = [0] let i, j, u, v, c const len = arr.length for (i = 0; i < len; i++) { const arrI = arr[i] if (arrI !== 0) { j = result[result.length - 1] if (arr[j] < arrI) {…
原博文:传送门 最长递增子序列(Longest Increasing Subsequence) 下面我们简记为 LIS. 定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素.注意d中元素是单调递增的,下面要用到这个性质.首先len = 1,d[1] = a[1],然后对a[i]:若a[i]>d[len],那么len++,d[len] = a[i];否则,我们要从d[1]到d[len-1]中找到一个j,满足d[j-1]<a[i]<d[j],…
转自:点击打开链接 最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS. 排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了. 假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5. 下面一步一步试着找出它. 我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列. 此外,我们用一个变量Len来记录现在最长算到多少了 首先,把d[1]有序地放到B里,令B[1] = 2,就是说当…
一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个序列中的部分(不要求连续),这个就叫做公共子序列,然后最长公共子序列自然就是所有的子序列中最长的啦. public static int lcs(String s1, String s2) { int[][] dp = new int[s1.length()+1][s2.length()+1]; f…
DP模型: d(i) 以第 i 个元素结尾的最长递增子序列的长度. 那么就有 d(i) = max(d(j)) + 1;(j<i&&a[j]<a[i]),答案 max(d(i)); 时间复杂度为 O(n*n); 下面介绍一个用二分优化的O(nlogn)的算法. 用一个数组g[i] 表示 d 值为 i 的数的最小的 a;即 最长递增子序列为 i 时,最小的 a 是多少. 显然 g[i]<=g[2]<=g[3]; 计算d[i] : 需要找到 g中大于等于a[i] 的第一…
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的最长公共子串方法.最长公共子串用动态规划可实现O(n^2)的时间复杂度,O(n^2)的空间复杂度:还可以进一步优化,用后缀数组的方法优化成线性时间O(nlogn):空间也可以用其他方法优化成线性.3.LIS(最长递增序列)DP方法可实现O(n^2)的时间复杂度,进一步优化最佳可达到O(nlogn)…
Luogu 3402 最长公共子序列(二分,最长递增子序列) Description 经过长时间的摸索和练习,DJL终于学会了怎么求LCS.Johann感觉DJL孺子可教,就给他布置了一个课后作业: 给定两个长度分别为n和m的序列,序列中的每个元素都是正整数.保证每个序列中的各个元素互不相同.求这两个序列的最长公共子序列的长度. DJL最讨厌重复劳动,所以不想做那些做过的题.于是他找你来帮他做作业. Input 第一行两个整数n和m,表示两个数列的长度. 第二行一行n个整数\[a_1,a_2,-…
1376 最长递增子序列的数量 首先可以用线段树优化$DP$做,转移时取$0...a[i]$的最大$f$值 但我要练习$CDQ$ $LIS$是二维偏序问题,偏序关系是$i<j,\ a_i<a_j$ $CDQ$分治可以解决偏序问题 $CDQ(l,r)\ :$ $CDQ(l,mid)$ $[l,r]$按$a$排序,$[l,mid] \rightarrow\ [mid+1,r]$ $CDQ(mid+1,r)$ 这个排序没法用归并排序,因为你要用最优的$f[k],k\in [mid+1,r]$来更新$…
题目: 输出最长递增子序列的长度,如输入 4 2 3 1 5 6,输出 4 (因为 2 3 5 6组成了最长递增子序列). 暴力破解法:这种方法很简单,两层for循环搞定,时间复杂度是O(N2). 动态规划:之前我们使用动态规划去解决一般是创建一维数组或者二维数组来构建出dp表,利用之前的历史上dp表中的值进行相关的处理求解出这个过程中的几个最大值,最小值,然后相加减来得出dp表的当前元素的值,所以我们会想,先创建一个一维数组,因为数组中选择的元素的范围在进行变化,所以dp表表示的值为截取到当前…
原始代码错误,移步博客查看O(N^2)及优化的O(N*logN)的实现:每天一道编程题--最长递增子序列…