斯特林数&斯特林反演】的更多相关文章

第一类斯特林数 定义 第一类Stirling数\(s(n,m)\),也可记为\(\begin{bmatrix}n\\m\end{bmatrix}\). 第一类Stirling分为无符号第一类Stirling数\(s_u(n,m)\)和带符号第一类Stirling数\(s_s(n,m)\). 他们分别表现为其升阶函数和降阶函数的各项系数,形式如下: \[ x^{n\downarrow}=x\cdot (x-1)\cdot (x-2)\cdots (x-n+1)=\sum_{k=0}^ns_s(n,…
题目 CF961G 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 相信大家能得出一个一眼式:\[Ans=\sum\limits_{i=1}^n w_i\sum\limits_{s=1}^n s\cdot C_{n-1}^{s-1}\begin{Bmatrix}k-1\\n-s\end{Bmatrix}\] 然后就开始推式: \[\begin{aligned}\\ Sum&=\sum\limits_{s=1}^n s\cdot C_{n-1}^{s-1}\begin…
题目 [国家集训队] Crash 的文明世界 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 \[\begin{aligned} ans_x&=\sum\limits_{i=1}^ndis(i,x)^k\\ &=\sum\limits_{i=1}^n\sum\limits_{j=0}^k\begin{Bmatrix}k\\j\end{Bmatrix}C_{dis(i,x)}^jj!\\ &=\sum\limits_{j=0}^k\begin{Bmatr…
题目 [HEOI2016/TJOI2016]求和 关于斯特林数与反演的更多姿势\(\Longrightarrow\)点这里 做法 \[\begin{aligned}\\ Ans&=\sum\limits_{i=0}^n \sum\limits_{j=0}^i \begin{Bmatrix}i\\j\end{Bmatrix}2^j×j!~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1\\ &=\sum\limits_{i=0}^n \sum\l…
题目 CF932E Team Work 前置:斯特林数\(\Longrightarrow\)点这里 做法 \[\begin{aligned}\\ &\sum\limits_{i=1}^n C_n^ii^k\\ &\sum\limits_{i=1}^n C_n^i\sum\limits_{j=0}^iC_i^j\begin{Bmatrix}k\\j\end{Bmatrix}j!\\ &\sum\limits_{i=1}^n \frac{n!}{(n-i)!}\sum\limits_{…
[51NOD 1847]奇怪的数学题(莫比乌斯反演,杜教筛,min_25筛,第二类斯特林数) 题面 51NOD \[\sum_{i=1}^n\sum_{j=1}^nsgcd(i,j)^k\] 其中\(sgcd\)表示次大公约数. 题解 明摆着\(sgcd\)就是在\(gcd\)的基础上除掉\(gcd\)的最小因数. 所以直接枚举\(gcd\). \[\begin{aligned} ans&=\sum_{i=1}^n\sum_{j=1}^n sgcd(i,j)^k\\ &=\sum_{i=1…
数学杂烩总结(多项式/形式幂级数+FWT+特征多项式+生成函数+斯特林数+二次剩余+单位根反演+置换群) 因为不会做目录所以请善用ctrl+F 本来想的是笔记之类的,写着写着就变成了资源整理 一些有的没的的前置 导数 \(f'(x)=\lim\limits_{\triangle x\rightarrow 0}\frac{f(x+\triangle x)-f(x)}{\triangle x}\) \(\sin x:\cos x\) \(\cos x:-\sin x\) \(\ln x:\frac{…
Description “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为答案很大,请对998244353取模输出.$n \le 10^9,k \le 200000$ 化学学考时含义推式子+手动打表找规律得到了一个$O(nlogn)$的式子开心的很我以为我要AC了回来看数据范围就升天了. 问NC大神这题用到了什么:斯特林数/伯努利数.然后就自闭了学了一天的知识点还去做了点…
题目链接 对于单独一个点,我们枚举它的度数(有多少条边)来计算它的贡献:\[\sum_{i=0}^{n-1}i^kC_{n-1}^i2^{\frac{(n-2)(n-1)}{2}}\] 每个点是一样的,所以\[Ans=n\cdot 2^{\frac{(n-2)(n-1)}{2}}\sum_{i=0}^{n-1}C_{n-1}^ii^k\] 考虑如何计算\(\sum_{i=0}^{n-1}C_{n-1}^ii^k\). 然后...dalao看到\(i^k\)就想起了第二类斯特林数: \(S(n,m…
题目链接 BZOJ5093 题解 点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上\(n\) 一个点可能向剩余的\(n - 1\)个点连边,那么就有 \[ans = 2^{{n - 1 \choose 2}}n \sum\limits_{i = 0}^{n - 1} {n - 1 \choose i} i^k\] 显然要求 \[\sum\limits_{i = 0}^{n} {n \choose i} i^k\] 然后我就不知道怎么做了.. 翻翻题解 有这样一个结论: \[n^k…