最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind 最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小支撑树(minimum spanning tree)算法.给定一个无向图G,并且它的每条边均权值,则MST是一个包括G的所有顶点及边的子集的图,这个子集保证图是连通的,并且子集中所有边的权值之和为所有子集中最小的. 本节中介绍三种算法求解图的最小生成树:Prim算法.Kruskal算法和Boruvk…
最小生成树,Prim算法与Kruskal算法,408方向,思路与实现分析 最小生成树,老生常谈了,生活中也总会有各种各样的问题,在这里,我来带你一起分析一下这个算法的思路与实现的方式吧~~ 在考研中呢,最小生成树虽然是只考我们分析,理解就行,但我们还是要知道底层是怎么实现的,话不多说,进入正题~~ 什么是生成树?什么是最小生成树 总所周知,对于一个无向连通图,我们想把他看成一个树的话,那么就不能太乱,也就引出了,如果对于一个生成树(不唯一,满足条件即可),如果砍去它的一条边,则会变成非连通图,如…
1.Prim 算法 以某顶点为起点,逐步找各顶点上最小权值的边来构建最小生成树. 2.Kruskal 算法 直接寻找最小权值的边来构建最小生成树. 比较: Kruskal 算法主要是针对边来展开,边数少时效率会非常高,所以对于稀疏图有很大的优势. Prim 算法针对顶点展开,对于稠密图,即边数非常多的情况下会更好. 具体代码如下: /* Graph.h头文件 */ /*包含图的建立:图的深度优先遍历.图的广度优先遍历*/ /*包含图的最小生成树:Prim 算法.Kruskal 算法*/ #inc…
最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻找n-1条边,恰好将这n个节点相连,并且这n-1条边的权值之和最小. 对于MST问题,通常常见的解法有两种:Prim算法   或者  Kruskal算法+并查集 对于最小生成树,一定要注意其定义是在无向连通图的基础上,如果在有向图中,那么就需要另外的分析,单纯用无向图中的方法是不能得出正确解的,这一…
普里姆算法(Prim算法) #include<bits/stdc++.h> using namespace std; #define MAXVEX 100 #define INF 65535 typedef char VertexType; typedef int EdgeType; typedef struct { VertexType vexs[MAXVEX]; EdgeType arc[MAXVEX][MAXVEX]; int numVertexes, numEdges; }MGraph…
无向加权图 1.生成树(minimum spanning trees) 图的生成树是它一棵含有所有顶点的无环联通子图 最小生成树:生成树中权值和最小的(所有边的权值之和) Prim算法.Kruskal算法就是实现最小生成树的算法 应用前提:权值各不相同的连通子图(权值相同,最小生成树不唯一) 2.Prim算法 算法描述: Prim算法是一种"加点法": 算法步骤: 1.定义图中所有顶点集合\(V\),从顶点\(s\)开始:初始化生成树顶点集合\(u={s}\),\(v=V-u\) 2.…
经典的最小生成树例子,Prime算法,具体的步骤及其注释本人均在代码中附加,请仔细阅读与品味,要求,可以熟练的打出. //Prime算法基础 #include<iostream> using namespace std; int main() { int n,m,i,j,k,min,t1,t2,t3; ][],dis[],book[] = {}; ; ,sum = ; cin >> n >> m; //初始化 用邻接矩阵存储 ;i <= n;i++) ;j <…
一.最小生成树(MST) ①.生成树的代价:设G=(V,E)是一个无向连通网,生成树上各边的权值之和称为该生成树的代价. ②.最小生成树:在图G所有生成树中,代价最小的生成树称为最小生成树. 最小生成树的概念可以应用到许多实际问题中. 例:在n个城市之间建造通信网络,至少要架设n-1条通信线路,而每两个城市之间架设通信线路的造价是不一样的,那么如何设计才能使得总造价最小? ③.MST性质:假设G=(V, E)是一个无向连通网,U是顶点集V的一个非空子集.若(u, v)是一条具有最小权值的边,其中…
最小生成树: 求一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边. 1:Prim算法(适合稠密图) 伪代码: Prim(G){ //G为图 int addnow[maxen];//记录当前有多少点被纳入集合: int lowcost[maxen]; //记录当前集合中的点到其他点的最小距离的边集合: init();//初始化点集合与边集合: addnow[start]=true; //将起点纳入点集合 ;i<G.vertex;i+…
Prime算法的思路:从任何一个顶点开始,将这个顶点作为最小生成树的子树,通过逐步为该子树添加边直到所有的顶点都在树中为止.其中添加边的策略是每次选择外界到该子树的最短的边添加到树中(前提是无回路). Prime算法的正确性证明: 引理1:对于连通图中的顶点vi,与它相连的所有边中的最短边一定是属于最小生成树的. 引理2: 证明: 假设最小生成树已经建成:(vi, vj)是连接到顶点vi的最短边,在最小生成树中取出vi,断开连接到vi的边,则生成树被拆分成 1.顶点vi 2.顶点vj所在的连通分…