指数家族-Beta分布】的更多相关文章

2. Beta分布 2.1 Beta分布 我们将由几个问题来得引出几个分布: 问题一:1:  2:把这个  个随机变量排序后得到顺序统计量  3:问  是什么分布 首先我们尝试计算  落在一个区间  的概率,也就是如下概率值:  我们可以把  分成三段  . 我们考虑第一种情形:假设  个数中只有一个落在区间  内,则这个区间内的数  是第  大的,则  中应该有  个数,  中有  个数,我们将此描述为事件  : 则有:   是  的高阶无穷小.显然  个数落在  区间有  种取法,余下  个…
原文为: 二项分布和Beta分布 二项分布和Beta分布 In [15]: %pylab inline import pylab as pl import numpy as np from scipy import stats Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.kernel.zmq.pylab.backend_inline]. For more informatio…
在机器学习领域中,概率模型是一个常用的利器.用它来对问题进行建模,有几点好处:1)当给定参数分布的假设空间后,可以通过很严格的数学推导,得到模型的似然分布,这样模型可以有很好的概率解释:2)可以利用现有的EM算法或者Variational method来学习.通常为了方便推导参数的后验分布,会假设参数的先验分布是似然的某个共轭分布,这样后验分布和先验分布具有相同的形式,这对于建模过程中的数学推导可以大大的简化,保证最后的形式是tractable. 在概率模型中,Dirichlet这个词出现的频率…
在<Gamma函数是如何被发现的?>里证明了\begin{align*} B(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} \text{d} x = \frac{\Gamma (m) \Gamma (n)}{\Gamma (m+n)} \end{align*}于是令\begin{align*} f_{m,n}(x) = \begin{cases} \frac{x^{m-1} (1-x)^{n-1}}{B(m, n)} = \frac{\Gamma (m+n)}{\G…
http://blog.csdn.net/shuimu12345678/article/details/30773929 0-1分布: 在一次试验中,要么为0要么为1的分布,叫0-1分布. 二项分布: 做n次伯努利实验,每次实验为1的概率为p,实验为0的概率为1-p;有k次为1,n-k次为0的概率,就是二项分布B(n,p,k). 二项分布计算: B(n,p,k) = 换一种表达方式,做n次伯努利实验,每次实验为1的概率是p1, 实验为0的概率是p2,有p1+p2=1:问x1次为实验为1,x2次实…
目前看到的关于beta分布最好的一个解释,由于贴过来格式不好看,所以附上链接: http://www.datalearner.com/blog/1051505532393058…
一些公式 Gamma函数 (1) 贝叶斯公式 (2) 贝叶斯公式计算二项分布概率 现在有一枚未知硬币,我们想要计算抛出后出现正面的概率.我们使用贝叶斯公式计算硬币出现正面的概率.硬币出现正反率的概率和硬币两面的质量有较大关系,由于硬币未知,我们不知道是否会有人做手脚,于是在实验之前我们认为硬币出现正面的概率服从均匀分布,即 (3) 抛硬币是一个二项试验,所以n次实验中出现x次正面的似然概率为 (4) 把(3)(4)式带入(2)式中,得到 考虑到Gamma函数,进一步推算有 (5) 这个分布就是大…
在看LDA的时候,遇到的数学公式分布有些多,因此在这里总结一下思路. 一.伯努利试验.伯努利过程与伯努利分布 先说一下什么是伯努利试验: 维基百科伯努利试验中: 伯努利试验(Bernoulli trial)是只有两种可能结果的单次随机试验. 即:对于一个随机变量而言,P(X=1)=p以及P(X=0)=1-p.一般用抛硬币来举例.另外,此处也描述了伯努利过程: 一个伯努利过程(Bernoulli process)是由重复出现独立但是相同分布的伯努利试验组成,例如抛硬币十次. 维基百科中,伯努利过程…
有一枚硬币(不知道它是否公平),假如抛了三次,三次都是“花”: 能够说明它两面都是“花”吗? 1 贝叶斯推断 按照传统的算法,抛了三次得到三次“花”,那么“花”的概率应该是: 但是抛三次实在太少了,完全有可能是运气问题.我们应该怎么办? 托马斯·贝叶斯(1702-1761),18世纪英国数学家,1742年成为英国皇家学会会员. 贝叶斯认为在实验之前,应根据不同的情况对硬币有所假设.不同的假设会得到不同的推断. 比如和滑不溜手的韦小宝玩.韦小宝可能拿出各种做过手脚的硬币,让我们猜不透,只能假设对硬…
---恢复内容开始--- 今天学习LDA主题模型,看到Beta分布和Dirichlet分布一脸的茫然,这俩玩意怎么来的,再网上查阅了很多资料,当做读书笔记记下来: 先来几个名词: 共轭先验: 在贝叶斯统计理论中,如果某个随机变量Θ的后验概率 p(θ|x)和他的先验概率p(θ)属于同一个分布簇的,那么称p(θ|x)和p(θ)为共轭分布,同时,也称p(θ)为似然函数p(x|θ)的共轭先验.简言之,共轭就是我俩天生一对.我们后面会看到,多项分布的先验概率分布和其后验概率分布就是共轭的. ok,下面我们…
1. 二项分布与beta分布对应 2. 多项分布与狄利克雷分布对应 3. 二项分布是什么?n次bernuli试验服从 二项分布 二项分布是N次重复bernuli试验结果的分布. bernuli实验是什么?做一次抛硬币实验,该试验结果只有2种情况,x= 1, 表示正面. x=0,表示反面. bernuli(x|p) = p^x*(1-p)^(1-x).如果了n次, 我们只要数一下正面的次数n_x,即可得到反面的次数n-n_x. n次重复的nernuli试验: n-bernuli(n_x|N,p)…
1. Γ(a+b)Γ(a)Γ(b):归一化系数 Beta(μ|a,b)=Γ(a+b)Γ(a)Γ(b)μa−1(1−μ)b−1 面对这样一个复杂的概率密度函数,我们不禁要问,Γ(a+b)Γ(a)Γ(b) 是怎么来的,还有既然是一种分布,是否符合归一化的要求,即: ∫10Beta(μ|a,b)dμ=1 通过后续的求解我们将发现,这两者其实是同一个问题,即正是为了使得 Beta 分布符合归一化的要求,才在前面加了 Γ(a+b)Γ(a)Γ(b),这样复杂的归一化系数. 为了证明: ∫10Beta(μ|a…
1. 伯努利分布与二项分布 伯努利分布:Bern(x|μ)=μx(1−μ)1−x,随机变量 x 取值为 0,1,μ 表示取值为 1 的概率: 二项分布:Bin(m|N,μ)=(Nm)μm(1−μ)N−m 2. Beta 分布 Beta(μ|a,b) 是对 μ 进行建模: Beta(μ|a,b)=Γ(a+b)Γ(a)Γ(b)μa−1(1−μ)b−1 3. 共轭分布 以 Beta(μ|a,b) 分布为参数 μ 的先验,二项分布为似然函数,则后验概率(poster): p(μ|m,ℓ,a,b)∝μm+…
近期一直有点小忙,可是不知道在瞎忙什么,最终有时间把Beta分布的整理弄完. 以下的内容.夹杂着英文和中文,呵呵- Beta Distribution Beta Distribution Definition: The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma distribution. It has the probability distribu…
title: [概率论]5-8:Beta分布(The Beta Distributions) categories: - Mathematic - Probability keywords: - The Beta Distribution toc: true date: 2018-04-02 15:14:12 Abstract: 本文介绍Beta分布的相关知识内容 Keywords: The Beta Distribution 开篇废话 我们预测未来某件事情是否发生的主要依据是先验知识,于是我相…
最近在看机器学习方面的资料,作为入门的李航教授所写的<统计机器学习>一书,刚看完第一章我也是基本处于懵了的状态,其中有一道题提到贝叶斯估计,看了下网上的资料都提到了一个叫做 beta分布的东西,于是顺着这一线索向下研究于是发现了下面这一文章,读后感觉不错,而且作者是 依据CC版权协议 共享博文,于是转载了过来,也被日后需要查看是方便. 本文转载于 http://blog.csdn.net/a358463121/article/details/52562940 本文 遵照 CC协议. 正文如下:…
1. Gamma函数 首先我们可以看一下Gamma函数的定义: Gamma的重要性质包括下面几条: 1. 递推公式: 2. 对于正整数n, 有 因此可以说Gamma函数是阶乘的推广. 3.  4.  关于递推公式,可以用分部积分完成证明: 2. Beta函数 B函数,又称为Beta函数或者第一类欧拉积分,是一个特殊的函数,定义如下: B函数具有如下性质: 3. Beta分布 在介绍贝塔分布(Beta distribution)之前,需要先明确一下先验概率.后验概率.似然函数以及共轭分布的概念.…
接下来我们就对除了正态分布以外的常用参数分布族进行参数估计,具体对连续型分布有指数分布.均匀分布,对离散型分布有二项分布.泊松分布几何分布. 今天的主要内容是均匀分布的参数估计,内容比较简单,读者应尝试一边阅读,一边独立推导出本文的结论.由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! 目录 Part 1:均匀分布的参数估计 Part 2:次序统计量 Part 3:均匀分布次序统计量与$\beta$分布 Part 1:均匀分布的参数估计 一般说来,离散分布似乎比连续…
背景 在Machine Learning中,有一个很常见的概率分布叫做Beta Distribution: 同时,你可能也见过Dirichelet Distribution: 那么Beta Distribution和Dirichlet Distribution的意义何在呢?   解释 1. 如果给你一个硬币,投这个硬币有\theta的概率抛出Head,有(1-\theta)的概率抛出Tail.如果在未来抛了五次这个硬币,有三次是Head,有两次是Tail,这个\theta最有可能是多少呢?如果你…
1. 伯努利分布 伯努利分布(Bernoulli distribution)又名两点分布或0-1分布,介绍伯努利分布前首先需要引入伯努利试验(Bernoulli trial). 伯努利试验是只有两种可能结果的单次随机试验,即对于一个随机变量X而言: 伯努利试验都可以表达为“是或否”的问题.例如,抛一次硬币是正面向上吗?刚出生的小孩是个女孩吗?等等 如果试验E是一个伯努利试验,将E独立重复地进行n次,则称这一串重复的独立试验为n重伯努利试验.进行一次伯努利试验,成功(X=1)概率为p(0<=p<…
public class BetaDistributionActivity { /** * @param alpha: eg. click * @param beta : eg. pv - click */ public static double BetaDist(double alpha, double beta) { double a = alpha + beta; double b = Math.sqrt((a - 2) / (2 * alpha * beta - a)); if (Ma…
http://blog.csdn.net/sweetrryy/article/details/6436358…
从之前的文章中,我们已经得到了所有需要求解的参数的优化分布的形式,分别为: ‍ 但是,我们从这些分布的表达式中(参见之前的文章),可以发现这些式子并不能够直接求解.这是因为各个参数之间相互耦合,从而导致得到的不是一个直接可以得到的解,所以我们需要进行迭代求解,正如我们在之前所描述的一样.我们观察这三组参数的表达形式,我们会发现,Z的求解依赖于r这个变量,而r这个变量的求解依赖于其余的所有参数.我们再看其他的参数,这些参数的求解依赖于r.从而我们得到了这个求解过程中的耦合部分.所以我们可以得到一个…
http://cos.name/2013/01/lda-math-beta-dirichlet/#more-6953 2. 认识Beta/Dirichlet分布2.1 魔鬼的游戏—认识Beta 分布 统计学就是猜测上帝的游戏,当然我们不总是有机会猜测上帝,运气不好的时候就得揣度魔鬼的心思.有一天你被魔鬼撒旦抓走了,撒旦说:“你们人类很聪明,而我是很仁慈的,和你玩一个游戏,赢了就可以走,否则把灵魂出卖给我.游戏的规则很简单,我有一个魔盒,上面有一个按钮,你每按一下按钮,就均匀的输出一个[0,1]之…
这涉及到数学的概率问题. 二元变量分布:          伯努利分布,就是0-1分布(比如一次抛硬币,正面朝上概率) 那么一次抛硬币的概率分布如下: 假设训练数据如下: 那么根据最大似然估计(MLE),我们要求u: 求值推导过程如下: 所以可以求出: 以上的推导过程就是极大似然估计,我们可以看出u就是样本出现的频率除以总共抛硬币的实验次数.但是极大似然估计有它的局限性,当训练样本比较小的时候会导致Overfitting问题,比如说抛了10次硬币,有8次朝上,那么根据极大似然估计,u的 取值就应…
这涉及到数学的概率问题. 二元变量分布:       伯努利分布,就是0-1分布(比如一次抛硬币,正面朝上概率) 那么一次抛硬币的概率分布如下: 假设训练数据如下: 那么根据最大似然估计(MLE),我们要求u: 求值推导过程如下: 所以可以求出: 以上的推导过程就是极大似然估计,我们可以看出u就是样本出现的频率除以总共抛硬币的实验次数.但是极大似然估计有它的局限性,当训练样本比较小的时候会导致Overfitting问题,比如说抛了10次硬币,有8次朝上,那么根据极大似然估计,u的取值就应该是8/…
机器学习的数学基础(1)--Dirichlet分布 这一系列(机器学习的数学基础)主要包括目前学习过程中回过头复习的基础数学知识的总结. 基础知识:conjugate priors共轭先验 共轭先验是指这样一种概率密度:它使得后验概率的密度函数与先验概率的密度函数具有相同的函数形式.它极大地简化了贝叶斯分析. 如何解释这句话.由于 P(u|D) = p(D|u)p(u)/p(D)   (1.0式) 其中D是给定的一个样本集合,因此对其来说p(D)是一个确定的值,可以理解为一个常数.P(u|D)是…
二项分布 | Binomial distribution 泊松分布 | Poisson Distribution 正态分布 | Normal Distribution | Gaussian distribution 负二项分布  | Negative binomial distribution 指数分布 | Exponential Distribution Βeta分布 | beta distribution Βeta二项分布 | Beta-binomial distribution 几何分布…
转http://blog.csdn.net/jwh_bupt/article/details/8841644 这一系列(机器学习的数学基础)主要包括目前学习过程中回过头复习的基础数学知识的总结. 基础知识:conjugate priors共轭先验 共轭先验是指这样一种概率密度:它使得后验概率的密度函数与先验概率的密度函数具有相同的函数形式.它极大地简化了贝叶斯分析. 如何解释这句话.由于 P(u|D) = p(D|u)p(u)/p(D)   (1.0式) 其中D是给定的一个样本集合,因此对其来说…
常用连续型分布介绍及R语言实现 R的极客理想系列文章,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大. R语言作为统计学一门语言,一直在小众领域闪耀着光芒.直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器.随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长.现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言. 要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领…