[导读]谷歌AI研究部门华人科学家再发论文<EfficientNet:重新思考CNN模型缩放>,模型缩放的传统做法是任意增加CNN的深度和宽度,或使用更大的输入图像分辨率进行训练,而使用EfficientNet使用一组固定额缩放系数统一缩放每个维度,超越了当先最先进图像识别网络的准确率,效率提高了10倍,而且更小. 目前提高CNN精度的方法,主要是通过任意增加CNN深度或宽度,或使用更大的输入图像分辨率进行训练和评估. 以固定的资源成本开发,然后按比例放大,以便在获得更多资源时实现更好的准确性…
​  前言 本文主要探究了轻量模型的设计.通过使用 Vision Transformer 的优势来改进卷积网络,从而获得更好的性能. 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读.CV招聘信息. ​ 论文:https://arxiv.org/abs/2203.03952 代码:https://github.com/hkzhang91/EdgeFormer 核心内容 本文主要探究了轻量模型的设计.通过使用 Vision Transformer 的优势来改进卷积…
语义分割--全卷积网络FCN详解   1.FCN概述 CNN做图像分类甚至做目标检测的效果已经被证明并广泛应用,图像语义分割本质上也可以认为是稠密的目标识别(需要预测每个像素点的类别). 传统的基于CNN的语义分割方法是:将像素周围一个小区域(如25*25)作为CNN输入,做训练和预测.这样做有3个问题: - 像素区域的大小如何确定 - 存储及计算量非常大 - 像素区域的大小限制了感受野的大小,从而只能提取一些局部特征 为什么需要FCN? 我们分类使用的网络通常会在最后连接几层全连接层,它会将原…
概述 对于计算机视觉的应用现在是非常广泛的,但是它背后的原理其实非常简单,就是将每一个像素的值pixel输入到一个DNN中,然后让这个神经网络去学习这个模型,最后去应用这个模型就可以了.听起来是不是很简单,其实如果大家深入研究的话,这里面还是有很多内容去学习的,例如:咱们的图片大小可能不一样,同一张图片不同的旋转角度可到的结果可能不一样,如何给咱们的本地图片来label(实际中并不是所有的数据都想mnist那样,谷歌都给咱们label好了,拿来用就行),等等这些问题咱们在实际中肯定都是要用到的.…
目录 目录 1. 为什么会出现图卷积神经网络? 2. 图卷积网络的两种理解方式 2.1 vertex domain(spatial domain):顶点域(空间域) 2.2 spectral domain:频域方法(谱方法) 3. 什么是拉普拉斯矩阵? 3.1 常用的几种拉普拉斯矩阵 普通形式的拉普拉斯矩阵 对称归一化的拉普拉斯矩阵(Symmetric normalized Laplacian) 随机游走归一化拉普拉斯矩阵(Random walk normalized Laplacian) 泛化…
CVPR2020论文解读:手绘草图卷积网络语义分割 Sketch GCN: Semantic Sketch Segmentation with Graph Convolutional Networks 论文链接:https://arxiv.org/pdf/2003.00678.pdf 摘要 介绍了一种用于手绘草图语义分割和标注的图形卷积神经网络SketchGCN.我们将输入草图视为二维点集,并将笔划结构信息编码为图形节点/边缘表示.为了预测每个点的标签,我们的SketchGCN使用图卷积和全局分…
CVPR2020:点云分析中三维图形卷积网络中可变形核的学习 Convolution in the Cloud: Learning Deformable Kernels in 3D Graph Convolution Networks for Point Cloud Analysis 论文地址: https://openaccess.thecvf.com/content_CVPR_2020/papers/Lin_Convolution_in_the_Cloud_Learning_Deformab…
基于孪生卷积网络(Siamese CNN)和短时约束度量联合学习的tracklet association方法 Siamese CNN Temporally Constrained Metrics Tracklet Association MTT MOT 读 'B. Wang, L. Wang, et.al. Joint Learning of Siamese CNNs and Temporally Constrained Metrics for Tracklet Association[j],…
主讲人 网神 (新浪微博:@豆角茄子麻酱凉面) 网神(66707180) 18:55:06 那我们开始了啊,前面第3,4章讲了回归和分类问题,他们应用的主要限制是维度灾难问题.今天的第5章神经网络的内容:1. 神经网络的定义2. 训练方法:error函数,梯度下降,后向传导3. 正则化:几种主要方法,重点讲卷积网络 书上提到的这些内容今天先不讲了,以后有时间再讲:BP在Jacobian和Hessian矩阵中求导的应用:混合密度网络:贝叶斯解释神经网络. 首先是神经网络的定义,先看一个最简单的神经…
载入MNIST数据集.创建默认Interactive Session. 初始化函数,权重制造随机噪声打破完全对称.截断正态分布噪声,标准差设0.1.ReLU,偏置加小正值(0.1),避免死亡节点(dead neurons). 卷积层函数,tf.nn.conv2d,TensorFlow 2 维卷积函数,参数x输入,W卷积参数,卷积核尺寸,channel个数,卷积核数量(卷积层提取特征数量).Strides卷积模板移动步长,全1代表不遗漏划过图片每一个点.Padding代表边界处理方式,SAME边界…