TopN案例】的更多相关文章

准备三份数据 t1 2067 t2 2055 t3 2055 t4 1200 t5 2367 t6 255 t7 2555 t8 12100 t9 20647 t10 245 t11 205 t12 100 t111 1067 t112 2155 t113 2065 t114 1290 t115 237 t116 25 t117 15 t118 1 t119 10647 t110 2995 t111 2057 t112 10044 t211 67 t212 55 t213 65 t214 90…
1.MyTopN  主程序 package com.littlepage.topn; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.Te…
上篇文章 spark 源码分析之十八 -- Spark存储体系剖析 重点剖析了 Spark的存储体系.从本篇文章开始,剖析Spark作业的调度和计算体系. 在说DAG之前,先简单说一下RDD. 对RDD的整体概括 文档说明如下: RDD全称Resilient Distributed Dataset,即分布式弹性数据集.它是Spark的基本抽象,代表不可变的可分区的可并行计算的数据集. RDD的特点: 1. 包含了一系列的分区 2. 在每一个split上执行函数计算 3. 依赖于其他的RDD 4.…
第1章 MapReduce概述 1.1 MapReduce定义 1.2 MapReduce优缺点 1.2.1 优点 1.2.2 缺点 1.3 MapReduce核心思想 MapReduce核心编程思想,如图4-1所示. 图4-1 MapReduce核心编程思想 1)分布式的运算程序往往需要分成至少2个阶段. 2)第一个阶段的MapTask并发实例,完全并行运行,互不相干. 3)第二个阶段的ReduceTask并发实例互不相干,但是他们的数据依赖于上一个阶段的所有MapTask并发实例的输出. 4…
第一章.spark源码分析之RDD四种依赖关系 一.RDD四种依赖关系 RDD四种依赖关系,分别是 ShuffleDependency.PrunDependency.RangeDependency和OneToOneDependency四种依赖关系.如下图所示:org.apache.spark.Dependency有两个一级子类,分别是 ShuffleDependency 和 NarrowDependency.其中,NarrowDependency 是一个抽象类,它有三个实现类,分别是OneToO…
第1章 MapReduce概述 定义:是一个分布式运算程序的编程框架 优缺点:易于编程.良好的扩展性.高容错性.适合PB级以上数据的离线处理 核心思想:MapReduce 编程模型只能包含一个Map 阶段和一个Reduce 阶段 MapReduce进程:MrAppMaster,负责整个程序的过程调度及状态协调MapTask,负责map阶段的数据处理ReduceTask,负责reduce阶段的数据处理 官方WordCount源码:Map 类.Reduce 类.驱动类组成 常用数据序列化类型:Had…
[转]SQL查询案例:取得分组 TOP-N CREATE TABLE TopnTest ( name     VARCHAR(10),   --姓名 procDate DATETIME,       --处理时间 result   INT              --成绩 ); INSERT INTO TopnTest VALUES('张三', '2010-10-01 12:00:05', 80); INSERT INTO TopnTest VALUES('张三', '2010-10-01 1…
Scala进阶之路-统计商家id的标签数以及TopN示例案例分析 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.项目需求 将“temptags.txt”中的数据进行分析,统计出商家id的评论标签数量,由于博客园无法上传大文件的文本,因此我把该文本的内容放在博客园的另一个链接了(需要的戳我),如果网页打不开的话也就可以去百度云盘里下载副本,链接:https://pan.baidu.com/s/1daRiwOVe6ohn42fTv6ysJg 密码:h6er. 我之前使用Had…
转自:https://github.com/ceys/jdml/wiki/ALS 阿基米德项目ALS矩阵分解算法应用案例 编写人:ceys/youyis 最后更新时间:2014.5.12 一.算法描述 1.原理 问题描述 ALS的矩阵分解算法常应用于推荐系统中,将用户(user)对商品(item)的评分矩阵,分解为用户对商品隐含特征的偏好矩阵,和商品在隐含特征上的映射矩阵.与传统的矩阵分解SVD方法来分解矩阵R($R\in \mathbb{R}^{m\times n}$)不同的是,ALS(alt…