支持向量机SVM(Support Vector Machine)】的更多相关文章

支持向量机(Support Vector Machine)是一种监督式的机器学习方法(supervised machine learning),一般用于二类问题(binary classification)的模式识别应用中. 支持向量机的最大特点是既能够最小化经验损失(也叫做经验风险.或者经验误差),同时又能够最大化几何间距(分类器的置信度),因此SVM又被称为最大边缘区(间距)的分类器. 根据具体应用场景的不同,支持向量机可以分为线性可分SVM.线性SVM和带有核函数的SVM.最终的结果都是得…
  支持向量机(Support Vector Machine,简称 SVM)于 1995 年正式发表,由于其在文本分类任务中的卓越性能,很快就成为机器学习的主流技术.尽管现在 Deep Learning 很流行,SVM 仍然是一种很有的机器学习算法,在数据集小的情况下能比 Deep Learning 取得更好的结果.   本文将详细介绍线性 SVM,非线性 SVM 涉及到的 kernel,本文中没有介绍.我将从以下两个方面展开介绍线性 SVM: 间隔和支持向量 对偶问题 1. 间隔和支持向量  …
一.SVM的简介 SVM(Support Vector Machine,中文名:支持向量机),是一种非常常用的机器学习分类算法,也是在传统机器学习(在以神经网络为主的深度学习出现以前)中一种非常牛X的分类算法.关于它的发展历史,直接引用Wikipedia中的,毕竟本文主要介绍它的推导过程,而不是历史发展. The original SVM algorithm was invented by Vladimir N. Vapnik and Alexey Ya. Chervonenkis in 196…
转载请注明出处:http://www.cnblogs.com/Peyton-Li/ 支持向量机 支持向量机(support vector machines,SVMs)是一种二类分类模型.它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机:支持向量机还包括核技巧,这使它成为实质上的非线性分类器.支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划(convex quadratic programming)的问题. 支持向量机学习方法包含构建由简至繁的模型:线…
第6章 支持向量机 <script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=default"></script> 支持向量机 概述 支持向量机(Support Vector Machines, SVM):是一种机器学习算法. 支持向量(Support Vector)就是离分隔超平面最近的那些点. 机(Machine)…
主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:59:22  大家好,今天一起交流下PRML第7章.第六章核函数里提到,有一类机器学习算法,不是对参数做点估计或求其分布,而是保留训练样本,在预测阶段,计算待预测样本跟训练样本的相似性来做预测,例如KNN方法. 将线性模型转换成对偶形式,就可以利用核函数来计算相似性,同时避免了直接做高维度的向量内积运算.本章是稀疏向量机,同样基于核函数,用训练样本直接对新样本做预测,而且只使用了少量训练样本,所以具有稀疏性,叫sp…
简单原理流程转自:http://wenku.baidu.com/link?url=57aywD0Q6WTnl7XKbIHuEwWENnSuPS32QO8X0a0gHpOOzdnNt_K0mK2cucVaEHVSAjHvBCvQNZGhe_TEgWoDeVoWNBATyAa0bc5eDZQweEm 详细原理和实验1:PMTK ToolBox和实验2:LibSVM转自:http://blog.163.com/huai_jing@126/blog/static/17186198320117141083…
本博客是针对Andrew NG在Coursera上发布的Machine Learning课程SVM部分的学习笔记. 目录 前言 最优化目标(Optimization Objective) 最大化边界的直觉(Large Margin Intuition) 最大化边界分类的数学原理(Mathematics Behind Large Margin Classification) 核(Kernel) 实际使用SVM的技巧 前言 相比logistic regression和neural network,S…
前言 学SVM看到对偶问题的时候很难受,因为看不懂,数学知识真的太重要了.后来在B站看到某up主的精彩推导,故总结如下. SVM基本型 由之前最大化间隔的计算可得SVM的基本型为: $\underset{\mathbf{w},b}{min}\   \ \ \  \frac{1}{2}\left \| \mathbf{w}\right \|^{2}$    $s.t. \ y_{i}(\mathbf{w}^{T}\mathbf{x}_{i})+b\geqslant 1,\ \ \ \ i=1,2,…
超平面 超平面是 $n$ 维空间的 $n-1$ 维子空间,类似二维空间的直线,三维空间的平面. 分类学习最基本的想法就是基于训练集D在样本空间中找到一个划分超平面,将不同类别的样本分开.以二维空间为例: 如图所示,若要把图中的红圆和蓝圆分开,有许多直线可以选择,而这些直线的定义就是: $Ax+By+C = 0$. 同理,如果是在三维空间中就是$Ax+By+Cz+D=0$. 当在更高的维数时,就是 $\omega _{1}x_{1} + \omega _{2}x_{2}+\omega _{3}x_…