传送门 后缀自动机好题. 题意: 做法:samsamsam 废话 考虑翻转字串,这样后缀的最长公共前缀等于前缀的最长公共后缀. 然后想到parentparentparent树上面两个串的最长公共后缀跟他们所处状态的lcalcalca有关系. 于是对于每一个lcalcalca都处理出它的sizesizesize和maxlengthmax_{length}maxlength​就行了. 代码: #include<bits/stdc++.h> #define ri register int using…
Brief Description Algorithm Design 下面给出后缀自动机的一个性质: 两个子串的最长公共后缀,位于这两个串对应的状态在parent树上的lca状态上.并且最长公共后缀的长度就是lca状态的len. 证明:对于一个串,他的所有祖先节点都是他的后缀,并且深度越大,长度越长,由此不难说明两个子串的最长公共后缀一定在lca状态上.考察这个lca,他代表的所有子串一定都是两个子串的公共后缀,我们直接取最大的就可以了. 有了这个性质,我们就可以开始乱搞了. Code #inc…
题意 题目链接 Sol 前面的可以直接算 然后原串翻转过来,这时候变成了求任意两个前缀的最长公共后缀,显然这个值应该是\(len[lca]\),求出\(siz\)乱搞一下 #include<bits/stdc++.h> #define int long long #define LL long long using namespace std; const int MAXN = 1e6 + 10; LL N; char a[MAXN]; int fa[MAXN], len[MAXN], siz…
3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2512  Solved: 1140[Submit][Status][Discuss] Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 后缀数组看这里 http://www.cnblogs.com/candy99/p/6250732.html 反串建SAM然后Parent Tree就是后缀树了 后缀树上两点的LCP…
[bzoj3238][Ahoi2013]差异 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sample Output 54 题解: 任意两个字符串的lcp是什么,就是如 a,b  那么若a==b 那么为len(a) 否则设sa[a]<sa[b] 那么为min(height[sa[a]+1-------sa[b]]) #include<cstring> #include<iostream>…
/* 前面的那一坨是可以O1计算的 后面那个显然后缀数组单调栈比较好写??? 两个后缀的lcp长度相当于他们在后缀树上的lca的深度 那么我们就能够反向用后缀自动机构造出后缀树然后统计每个点作为lca的情况和即可 */ #include<cstdio> #include<algorithm> #include<cstring> #include<queue> #include<iostream> #define ll long long #def…
传送门 后缀自动机基础题. 题意简述:支持动态在串尾插入字符,查询在串中出现超过kkk次的子串的个数. 动态修改samsamsam,每次增量构造好了之后在parentparentparent树上从新建的npnpnp到根节点上没有超过kkk次的状态全部更新一遍统计答案就行. 因为从npnpnp到根的出现次数是单调递增的,因此只要当前节点出现次数不少于kkk次就不用继续更新了. 代码: #include<bits/stdc++.h> #define ri register int using na…
传送门 后缀自动机基础题. 求长度为iii的子串出现次数的最大值. 对原串建出samsamsam,然后用sizsizsiz更新每个maxlenmaxlenmaxlen的答案. 然后由于后缀链接将其转化成了一种树形结构,因此直接在上面树形递推即可. 代码 #include<bits/stdc++.h> #define ri register int using namespace std; const int N=5e5+5; int n; char s[N]; struct SAM{ int…
题目见此 题解:首先所有后缀都在最后一个np节点,然后他们都是从1号点出发沿一些字符边到达这个点的,所以下文称1号点为根节点,我们思考一下什么时候会产生lcp,显然是当他们从根节点开始一直跳相同节点的时候,所以思路就是先找出每个节点被几个后缀经过,这显然把边反转倒着找就可以了,然后他会被出现次数sz个串经过. 出现次数等于parent树子树中np类节点的个数,这跑个dfs就好了,一个相同前缀产生的贡献是sz*(sz-1)/2 然后思考一个点可能代表多个子串,但是他们的出现次数都是相同的,所以单个…
后缀自动机的parent树就是反串的后缀树. 所以只需要反向构建出后缀树,就可以乱搞了. #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> using namespace std; #define F(i,j,k) for (int i=j;i<=k;++i) #define D(i,j,k) for (int i=j;i>=k;--i) #…