@1-5使用pandas保存豆瓣短评数据】的更多相关文章

使用pandas保存豆瓣短评数据 Python爬虫(入门+进阶)     DC学院 本节课程的内容是介绍open函数和pandas两种保存已爬取的数据的方法,并通过实际例子使用pandas保存数据. 保存数据的方法: open函数保存 pandas包保存(本节课重点讲授) csv模块保存 numpy包保存 使用open函数保存数据 1. open函数用法 使用with open()新建对象 写入数据 import requests from lxml import etree   url = '…
在之前的文章中,我们获得了豆瓣爬取的短评内容,汇总到了一个文件中,但是,没有被利用起来的数据是没有意义的. 前文提到,有一篇微信推文的关于词云制作的一个实践记录,准备照此试验一下. 思路分析 读文件 利用with open() as...将文件读进来.这里需要注意文件内容的大小. 分词 由于获取的是大量的短评文字,而制作词云需要的是各种词语,有了词,才能谈词云,所以目前第一步需求的就是讲短评内容拆分成一个个的中文词汇. 这里就用到了我所听过的一个库jieba,可以将中文语句拆解成一个个的词汇.这…
在上篇实现了电影详情和短评数据的抓取.到目前为止,已经抓了2000多部电影电视以及20000多的短评数据. 数据本身没有规律和价值,需要通过分析提炼成知识才有意义.抱着试试玩的想法,准备做一个有关情感分析方面的统计,看看这些评论里面的小伙伴都抱着什么态度来看待自己看过的电影,怀着何种心情写下的短评. 鉴于爬取的是短评数据,少则10来个字,多则百来个字,网上查找了下,发现Google开源的Word2Vec比较合适,于是今天捣鼓了一天,把自己遇到的问题和运行的结果在这里做个总结. Word2Ve是g…
一直想做个这样的爬虫:定制自己的种子,爬取想要的数据,做点力所能及的小分析.正好,这段时间宝宝出生,一边陪宝宝和宝妈,一边把自己做的这个豆瓣电影爬虫的数据采集部分跑起来.现在做一个概要的介绍和演示. 动机 采集豆瓣电影数据包括电影详情页数据和电影的短评数据. 电影详情页如下图所示 需要保存这些详情字段如导演.编剧.演员等还有图中右下方的标签. 短评页面如下图所示 需要保存的字段有短评所属的电影名称,每条评论的详细信息如评论人名称.评论内容等. 数据库设计 有了如上的需求,需要设计表,其实很简单,…
作业要求来源:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/3159 爬虫综合大作业 选择一个热点或者你感兴趣的主题. 选择爬取的对象与范围. 了解爬取对象的限制与约束. 爬取相应内容. 做数据分析与文本分析. 形成一篇文章,有说明.技术要点.有数据.有数据分析图形化展示与说明.文本分析图形化展示与说明. 文章公开发布. 参考: 32个Python爬虫项目 都是谁在反对996? Python和Java薪资最高,C#最低! 给<流浪…
<哪吒之魔童降世>这部国产动画巅峰之作,上映快一个月时间,票房口碑双丰收. 迄今已有超一亿人次观看,票房达到42.39亿元,超过复联4,跻身中国票房纪录第三名,仅次于<战狼2>和<流浪地球>. 去看豆瓣的评论,网友们对<哪吒>的喜爱溢于言表: 那么,网友评价哪吒这部动画用的最多的词是什么呢?不把这些短评都爬取下来,再做个词云分布,就能了解网友都说了啥了. 这次是用python登录并爬取豆瓣短评,并做词云分布,分别用到requests.xpath.lxml.j…
Scrapy 通过登录的方式爬取豆瓣影评数据 爬虫 Scrapy 豆瓣 Fly 由于需要爬取影评数据在来做分析,就选择了豆瓣影评来抓取数据,工具使用的是Scrapy工具来实现.scrapy工具使用起来比较简单,主要分为以下几步: 1.创建一个项目 ==scrapy startproject Douban 得到一个项目目录如下: ├── Douban │   ├── init.py │   ├── items.py │   ├── pipelines.py │   ├── settings.py…
使用Xpath解析豆瓣短评 Python爬虫(入门+进阶)     DC学院 本节课程主要介绍解析神器Xpath是什么.Xpath如何安装及使用,以及使用实际的例子讲解Xpath如何解析豆瓣短评的网页并获取数据. 解析神器Xpath Xpath的使用 实战环节 解析神器Xpath: 1. 什么是Xpath XPath即为XML路径语言(XML Path Language),它是一种用来确定XML文档中某部分位置的语言. XPath基于XML的树状结构,提供在数据结构树中找寻节点的能力.起初XPa…
在许多应用中,数据可能分散在许多文件或数据库中,存储的形式也不利于分析.本部分关注可以聚合.合并.重塑数据的方法. 1.层次化索引 层次化索引(hierarchical indexing)是pandas的一项重要功能,它使你能在一个轴上拥有多个(两个以上)索引级别.抽象点说,它使你能以低纬度形式处理高纬度数据.我们来看一个简单的栗子:创建一个Series,并用一个由列表或数组组成的列表作为索引: data = pd.Series(np.random.randn(9), index=[['a',…
概述: 制作词云的步骤: 1.从文件中读取数据 2.根据数据追加在一个字符串里面,然后用jieba分词器将评论分开 3.设置WordCloud词云参数 4.保存最后的结果 数据:使用爬取的豆瓣影评数据 第一步:引入依赖库 # 1.表格库 import csv # 2.jieba分词器 import jieba # 3.算法运算库 import numpy # 4.图像库 from PIL import Image # 5.词云库 from wordcloud import WordCloud 第…