首先,我们珂以抽象出S函数的模型:把n拆成k个正整数,有多少种方案? 答案是C(n-1,k-1). 然后发现我们要求的是一段连续的函数值,仔细思考,并根据组合数的性质,我们珂以发现实际上答案就是在让求2^(n-1). 然鹅我们并不能高兴地过早.因为n的数量级竟然到了丧心病狂的1e100000.连高精度都救不了它. 费马小定理 费马小定理有两种形式:  $a^{p-1}$≡1($mod$ $p$)   与 $a^p$≡$a$($mod$ $p$). 第二种形式更为通用,是因为第一种形式不能涵盖“$…
链接:传送门 题意:求 N 的拆分数 思路: 吐嘈:求一个数 N 的拆分方案数,但是这个拆分方案十分 cd ,例如:4 = 4 , 4 = 1 + 3 , 4 = 3 + 1 , 4 = 2 + 2 , 4 = 1 + 1 + 2 , 4 = 1 + 2 + 1 , 4 = 2 + 1 + 1 , 4 = 1 + 1 + 1 + 1,共 8 种,你没有看错,这跟普通概念上的拆分数有很大的不同,拆分数不考虑顺序,即 4 = 1 + 3 与 4 = 3 + 1 是相同的,及其坑爹,所以可以发现 N…
题意: 这题意看了很久.. s(k)表示的是把n分成k个正整数的和,有多少种分法. 例如: n=4时, s(1)=1     4 s(2)=3     1,3      3,1       2,2 s(3)=3     1,1,2         1,2,1       2,1,1 s(4)=1       1,1,1,1 s(1)+s(2)+s(3)+s(4)=1+3+3+1=8 当n=1,2,3,4时,可以分别求出结果为    1,2,4,8 于是推出答案就是2^(n-1)---------…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4704 题目大意: 看似复杂,其实就是求整数n的划分数,4=1+1+2和4=1+2+1是不同的.因而可知答案是2n-1. 题目分析: 因为n实在是太大太大了,这可咋办啊?!n<10100000. 做这场的时候没有注意到,也是当时没有看过什么是费马小定理,居然跟模值有关系!mod=1000000007.这个mod有什么特点呢?它是个质数. 费马小定理揭示了:当p是一个素数并且a和p互质时,ap-1 %…
题目 题意:将N拆分成1-n个数,问有多少种组成方法. 例如:N=4,将N拆分成1个数,结果就是4:将N拆分成2个数,结果就是3(即:1+3,2+2,3+1)--1+3和3+1这个算两个,则这个就是组合数问题. 根据隔板定理,把N分成一份的分法数为C(1,n-1), 把N分成两份的分法数为C(2,n-1), 把N分成三份的分法数为C(3,n-1),.... , 把N分成N份的分法数为C(n-1,n-1). 即我们要求的结果为: 2^(n-1)% mod  但是 [  1<=n<1e5,  mo…
看题解一开始还有地方不理解,果然是我的组合数学思维比较差 然后理解了之后自己敲了一个果断TLE.... 我以后果然还得多练啊 好巧妙的思路啊 知识1: 对于除法取模还需要用到费马小定理: a ^ (p - 1) % p = 1; -> a ^ (p - 2) % p = (1 / a) % p; 巧妙1: for(int i=1;i<=n;i++) { int temp; scanf("%d",&temp); sum1[temp]++; } for(int j=i;…
题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少时最少的个数,rb代表1最多时的个数.一张牌翻两次和两张牌翻一次 得到的奇偶性相同,所以结果中lb和最多的rb的奇偶性相同.如果找到了lb和rb,那么,介于这两个数之间且与这两个数奇偶性相同的数均可取到,然后在这个区间内求组合数相加(若lb=3,rb=7,则3,5,7这些情况都能取到,也就是说最后的…
解题思路:给定素数p,定义p内封闭的加法和乘法运算(运算封闭的定义:若从某个非空数集中任选两个元素(同一元素可重复选出),选出的这两个元素通过某种(或几种)运算后的得数仍是该数集中的元素,那么,就说该集合对于这种(或几种)运算是封闭的.),使得等式$(m+n)^p = m^p + n^p(0 \leq m,n<p) $恒成立. 由费马小定理可得$(m+n)^p\equiv(m+n)(mod\;p)$,则$m^p + n^p \equiv(m+n)(mod\;p)$. ∴在模p的意义下,$ (m+…
Kyoya Ootori has a bag with n colored balls that are colored with k different colors. The colors are labeled from 1 to k. Balls of the same color are indistinguishable. He draws balls from the bag one by one until the bag is empty. He noticed that he…
链接:https://www.nowcoder.com/acm/contest/106/B 来源:牛客网 题目描述 It's universally acknowledged that there're innumerable trees in the campus of HUST. One day Xiao Ming is walking on a straight road and sees many trees line up in the right side. Heights of e…