SST:Single-Stream Temporal Action Proposals 这是本仙女认认真真读完且把算法全部读懂(其实也不是非常懂)的第一篇论文 CVPR2017 一作 论文写作的动机motivation 这篇文章介绍了一个时间维度上的proposal方法,用来进行动作识别 Introduction 视频中记录了大量关于人类行为动作的信息,要想处理这些数据,计算机视觉算法需要能够进行人类动作识别和检测的能力 以往所用的动作识别的方法: 一开始动作识别被简单的看作是视频分割,也就是把…
SST: Single-Stream Temporal Action Proposals 2017-06-11 14:28:00 本文提出一种 时间维度上的 proposal 方法,进行行为的识别.本文方法具有如下的几个特点: 1. 可以处理 long video sequence,只需要一次前向传播就可以处理完毕整个video:可以处理任意长度的 video,而不需要处理重叠的时间窗口: 2. 在 proposal generation task 上取得了顶尖的效果: 3. SST propo…
Motivation 实现快速和准确地抽取出视频中的语义片段 Proposed Method -提出了TURN模型预测proposal并用temporal coordinate regression来校正proposal的边界 -通过复用unit feature来实现快速计算 主要步骤如下: Video Unit Processing: 将输入的视频平均分为多个video units,每一个unit包含16帧,源码给的feature是30fps的帧率.将每一个unit送入visual encod…
Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture Heron 架构例如以下图: 用户编写公布topoloy到Aurora调度器.每个topology都作为一个Aurora的job在执行.每个job包含几个container,这些container由Aurora来分配和调度.第一个container作为Topology Master.其它的Cont…
知识点 mAP:detection quality. Abstract 本文提出一种基于快速区域的卷积网络方法(快速R-CNN)用于对象检测. 快速R-CNN采用多项创新技术来提高训练和测试速度,同时提高检测精度. 采用VGG16的网络:VGG: 16 layers of 3x3 convolution interleaved with max pooling + 3 fully-connected layers Introduction 物体检测相对于图像分类是更复杂的,应为需要物体准确的位置…
Dueling Network Architectures for Deep Reinforcement Learning ICML 2016 Best Paper 摘要:本文的贡献点主要是在 DQN 网络结构上,将卷积神经网络提出的特征,分为两路走,即:the state value function 和 the state-dependent action advantage function. 这个设计的主要特色在于 generalize learning across actions w…
论文笔记:Towards Diverse and Natural Image Descriptions via a Conditional GAN ICCV 2017 Paper: http://openaccess.thecvf.com/content_ICCV_2017/papers/Dai_Towards_Diverse_and_ICCV_2017_paper.pdf Implementation(Torch): https://github.com/doubledaibo/gancapt…
论文笔记系列-Neural Network Search :A Survey 论文 笔记 NAS automl survey review reinforcement learning Bayesian Optimization evolutionary algorithm  注:本文主要是结合自己理解对原文献的总结翻译,有的部分直接翻译成英文不太好理解,所以查阅原文会更直观更好理解. 本文主要就Search Space.Search Strategy.Performance Estimatio…
Action Recognition: 行为识别,视频分类,数据集为剪辑过的动作视频 Temporal Action Detection: 从未剪辑的视频,定位动作发生的区间,起始帧和终止帧并预测类别 难点 1: 边界不明确(助跑跳远,上篮,高尔夫挥杆) 2: 如何利用时序信息 3: 时序跨度大(Activitynet:1s — 200s) 上图为模型框架,用temporal actionness grouping算法提取proposal后进行上下文信息的金字塔池化,后接两个级联分类器分别是完整…
Video Frame Synthesis using Deep Voxel Flow 论文笔记 arXiv 摘要:本文解决了模拟新的视频帧的问题,要么是现有视频帧之间的插值,要么是紧跟着他们的探索.这个问题是非常具有挑战性的,因为,视频的外观和运动是非常复杂的.传统 optical-flow-based solutions 当 flow estimation 失败的时候,就变得非常困难:而最新的基于神经网络的方法直接预测像素值,经常产生模糊的结果. 于是,在此motivation的基础上,作者…