题目描述 给定一个数列,包含N个整数,求这个序列的最长上升子序列. 例如 2 5 3 4 1 7 6 最长上升子序列为 4. 1.O(n2)算法解析 看到这个题,大家的直觉肯定都是要用动态规划来做,那么我们先设立一个数组. 设d[ i ]为以a[ i ]为结尾的最大子序列的长度 有了这个后,我们可以很容易的写出状态转移方程: d[ i ] = max(d[ i ] , d[ j ] + 1) 若 j < i 且 a[ i ] > a[ j ] #include <stdio.h>…
1134 最长递增子序列 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出长度为N的数组,找出这个数组的最长递增子序列.(递增子序列是指,子序列的元素是递增的) 例如:5 1 6 8 2 4 5 10,最长递增子序列是1 2 4 5 10.   Input 第1行:1个数N,N为序列的长度(2 <= N <= 50000) 第2 - N + 1行:每行1个数,对应序列的元素(-10^9 <= S[i] <= 10^9) Output 输…
p275 d(i)是以Ai为结尾的最长上升子序列的长度 <算法竞赛入门经典-训练指南>p62 问题6 提供了一种优化到 O(nlogn)的方法. 文本中用g(i)表示d值为i的最小状态编号(数组下标),满足 g(1) <= g(2) <= g(3) <= ... <= g(n) 可以用反证法: 假设 i < j, g(i) > g(j) g(j)代表 d(x) = j 的最小 x,对应的LIS的长度为j,最后一个元素是Ax,设这个LIS为LISj g(i)代…
二分 lower_bound lower_bound()在一个区间内进行二分查找,返回第一个大于等于目标值的位置(地址) upper_bound upper_bound()与lower_bound()的主要区别在于前者返回第一个大于目标值的位置 int lowerBound(int x){ int l=1,r=n; while(l<=r){ int mid=(l+r)>>1; if (x>g[mid]) l=mid+1; else r=mid-1; } return l; } in…
最长上升子序列 LIS Description 给出一个 1 ∼ n (n ≤ 10^5) 的排列 P 求其最长上升子序列长度 Input 第一行一个正整数n,表示序列中整数个数: 第二行是空格隔开的n个整数组成的序列. Output 最长上升子序列的长度 Sample Input 7 1 7 3 5 9 4 8 Sample Output 4 解析 这题\(O\)(\(n^2\))很容易就能想到, 然而,\(1e5\)却会炸掉.... 所以,考虑二分. 我们维护一个类似于栈的数组\(q\)(其…
最长公共子序列LCS Lintcode 77. 最长公共子序列 LCS问题是求两个字符串的最长公共子序列 \[ dp[i][j] = \left\{\begin{matrix} & max(dp[i-1][j], dp[i][j-1]), s[i] != s[j]\\ & dp[i-1][j-1] + 1, s[i] == s[j] \end{matrix}\right. \] 许多问题可以变形为LCS问题以求解 class Solution { public: /** * @param…
一个数组求其最长递增子序列(LIS) 例如数组{3, 1, 4, 2, 3, 9, 4, 6}的LIS是{1, 2, 3, 4, 6},长度为5,假设数组长度为N,求数组的LIS的长度, 需要一个额外的数组 LIS 来记录 长度从1 到 n 慢慢变长求解的过程中 对应长度的 最长递增子序列的最小的末尾元素 解决方法 长度为1时 {3}: 将3放入LIS中,表示长度为1的时候,{3}数组的最长递增子序列的最小微元素 LIS:{3} 只有一个元素,所以 最长递增子序列就是 {3},最长递增子序列的最…
今天GM讲了最长上升子序列的logn*n算法,但没讲思路... 我看了篇博客,发现-- 说的有道理!!! 首先,举例子: a[7]={1,2,4,3,6,7,5}(假设以1开头) 很明显,LIS=5: 那么我们开个b数组玩玩然后令 i = 1 to 9 逐个考察这个序列; 用len表示b数组的个数: b[1]=a[i]=1; 那么目前为止,LIS=1,结尾最小是1:继续: 因为a[i]>b[len],所以说:b[++len]=a[i]:(a[2]>b[1],b[2]=a[2]);第三个也同理.…
[本文链接] http://www.cnblogs.com/hellogiser/p/dp-of-LIS.html [分析] 思路一:设序列为A,对序列进行排序后得到B,那么A的最长递增子序列LIS就是序列A和B的最长公共子序列LCS,即LIS(A) = LCS(A,B).时间复杂度为n^2. 思路二:动态规划.时间复杂度为n^2,可以进一步优化为n^lgn. [代码]  C++ Code  1234567891011121314151617181920212223242526272829303…
今天在看代码源文件求diff的原理的时候看到了LCS算法.这个算法应该不陌生,动规的经典算法.具体算法做啥了我就不说了,不知道的可以直接看<算法导论>动态规划那一章.既然看到了就想回忆下,当想到算法正确性的时候,发现这个算法的正确性证明并不好做.于是想了一段时间,里面有几个细节很trick,容易陷进去.想了几轮,现在把证明贴出来,有异议的可以留言一起交流. 先把一些符号和约定说明下: 假设有两个数组,A和B.A[i]为A的第i个元素,A(i)为由A的第一个元素到第i个元素所组成的前缀.m(i,…