一.数仓分层介绍 1.实时计算与实时数仓 实时计算实时性高,但无中间结果,导致复用性差 实时数仓基于数据仓库,对数据处理规划.分层,目的是提高数据的复用性 2.电商数仓的分层 ODS:原始日志数据和业务数据 DWD:以数据对象为单位进行分流,如订单.页面访问等 DIM:维度数据 DWM:数据对象进一步加工,形成宽表&明细数据[明细宽表] DWS:根据主题对数据聚合,形成主题宽表[主题宽表] ADS:将CLickHouse中的数据根据需求进行筛选聚合 二.实时需求概览 1.离线计算与实时计算 离线…
ByteHouse云数仓版是字节跳动数据平台团队在复用开源 ClickHouse runtime 的基础上,基于云原生架构重构设计,并新增和优化了大量功能.在字节内部,ByteHouse被广泛用于各类实时分析领域,最大的一个集群规模大于2400节点,管理的总数据量超过700PB.本分享将介绍ByteHouse云原生版的整体架构,并重点介绍ByteHouse在查询上的优化(如优化器.MPP执行模式.调度优化等)和对MySQL生态的完善(基于社区MaterializedMySQL功能),最后结合实际…
  前言 在 Android开发中,性能优化策略十分重要 本文主要讲解性能优化中的内存优化,希望你们会喜欢 目录   1. 定义 优化处理 应用程序的内存使用.空间占用 2. 作用 避免因不正确使用内存 & 缺乏管理,从而出现 内存泄露(ML).内存溢出(OOM).内存空间占用过大 等问题,最终导致应用程序崩溃(Crash) 3. 储备知识:Android 内存管理机制 3.1 简介   下面,将针对回收 进程.对象 .变量的内存分配 & 回收进行详细讲解 3.2 针对进程的内存策略 a.…
1.概述 Java程序最初是通过解释器(Interpreter)进行解释执行的,当虚拟机发现某个方法或代码块的运行特别频繁时,就会把这些代码认定为“热点代码”(Hot Spot Code). 为了提高热点代码的执行效率,在运行时,虚拟机将会把这些代码编译成与本地平台相关的机器码,并进行各种层次的优化,完成这个任务的编译器称为即时编译器(Just In Time Compiler,下文中简称JIT编译器). 2 HotSpot虚拟机内的即时编译器 2.1.解释器和编译器 解释器的优势:快速启动和执…
目录 QuantLib 金融计算--数学工具之优化器 概述 Optimizer Constraint OptimizationMethod EndCriteria 示例 Rosenbrock 问题 校准问题 如果未做特别说明,文中的程序都是 Python3 代码. QuantLib 金融计算--数学工具之优化器 载入模块 import QuantLib as ql import scipy print(ql.__version__) 1.12 概述 在量化金融的模型校准过程中,最重要的工具是对函…
[点击了解更多大数据知识] 市场的变幻,政策的完善,技术的革新--种种因素让我们面对太多的挑战,这仍需我们不断探索.克服. 今年,网易数帆将持续推出新栏目「金融专家说」「技术专家说」「产品专家说」等,聚集数帆及合作伙伴的数字化转型专家天团,聚焦大数据.云原生.人工智能等科创领域,带来深度技术解读及其在各行业落地应用等一系列知识分享,为企业数字化转型成功提供有价值的参考. 今天由网易数帆大数据离线技术专家尤夕多带来能帮助标准化企业级离线数仓优化存储,提高性能,且已在网易内部实践验证过的成熟技术方案…
转自:http://blog.csdn.net/qinrenzhi/article/details/78334677 相关博客http://blog.chinaunix.net/uid-24954950-id-2956476.html 相关博客http://blog.csdn.net/misiter/article/details/7514428 相关博客http://blog.chinaunix.net/uid-23916171-id-2653114.html Gcc 编译优化简介 gcc 提…
一.OLAP简介 1. 概念 OLAP是英文是On-Line Analytical Processing的缩写,意为联机分析处理.此概念最早由关系数据库之父E.F.Codd于1993年提出.OLAP允许以一种称为多维数据集的结构,访问业务数据源经过聚合和组织整理后的数据.以此为标准,OLAP作为单独的一类技术同联机事务处理(On-Line Transaction Processing,OLTP)得以明显区分.        在计算领域,OLAP是一种快速应答多维分析查询的方法,也是商业智能的一个…
[摘要] CarbonData将存储和计算逻辑分离,通过索引技术让存储和计算物理上更接近,提升CPU和IO效率,实现超高性能的大数据分析.以CarbonData为融合数仓的大数据解决方案,为金融转型打造新一代数仓引擎. 金融领域随着数据与日俱增(如国内某大行,平均3亿笔业务/天,峰值6亿/天):业务驱动下的数据分析灵活性要求越来越高,不同业务的数据分系统构建,导致冗余严重,缺乏高效.统一的融合数仓,阻碍企业快速转型.如何对浪涌式的数据进行整合分析,发挥最大价值,金融机构对数据的处理提出了相应诉求…
声明 本文中介绍的非功能性规范均为建议性规范,产品功能无强制,仅供指导. 参考文献 <大数据之路——阿里巴巴大数据实践>——阿里巴巴数据技术及产品部 著. 背景及目的 数据对一个企业来说已经是一项重要的资产,既然是资产,肯定需要管理.随着业务的增加,数据的应用越来越多,企业在创建的数仓过程中对数据的管理也提出了更高的要求,而数据质量也是数仓建设过程不容忽视的环节.本文针对MaxCompute数仓建设过程中如何做数据质量给出规范建议,为实际数据治理提供依据及指导. 数据质量保障原则 评估数据质量…