深入了解 GPU 互联技术——NVLINK】的更多相关文章

前言 本文通过介绍 GPU 编程技术的发展历程,让大家初步地了解 GPU 编程,走进 GPU 编程的世界. 冯诺依曼计算机架构的瓶颈 曾经,几乎所有的处理器都是以冯诺依曼计算机架构为基础的.该系统架构简单来说就是处理器从存储器中不断取指,解码,执行. 但如今这种系统架构遇到了瓶颈:内存的读写速度跟不上 CPU 时钟频率.具有此特征的系统被称为内存受限型系统,目前的绝大多数计算机系统都属于此类型. 为了解决此问题,传统解决方案是使用缓存技术.通过给 CPU 设立多级缓存,能大大地降低存储系统的压力…
GPU虚拟化技术详解 GPU英文名称为Graphic Processing Unit,GPU中文全称为计算机图形处理器,1999年由NVIDIA公司提出. 一.GPU概述 GPU这一概念也是相对于计算机系统中的CPU而言的,由于人们对图形的需求越来越大,尤其是在家用系统和游戏发烧友,而传统的CPU不能满足现状,因此需要提供一个专门处理图形的核心处理器. GPU作为硬件显卡的"心脏",地位等同于CPU在计算机系统中的作用.同时GPU也可以用来作为区分2D硬件显卡和3D硬件显卡的重要依据.…
原文链接:传送门 详细内容: 电脑结构和CPU.内存.硬盘三者之间的关系 前面提到了,电脑之父——冯·诺伊曼提出了计算机的五大部件:输入设备.输出设备.存储器.运算器和控制器. 我们看一下现在我们电脑的: 键盘鼠标.显示器.机箱.音响等等. 这里显示器为比较老的CRT显示器,现在一般都成功了液晶显示器. 我们想一下,我们在玩电脑的时候,我们使用键盘鼠标来操作电脑,我们在和其他人QQ聊天的时候,鼠标可以帮我们选中聊天的人,打开聊天窗口,键盘则是负责打字,帮我们输入聊天的内容. 我们在操作键盘鼠标的…
本文内容节选自由msup主办的第七届TOP100summit,北京一流科技有限公司首席科学家袁进辉(老师木)分享的<让AI简单且强大:深度学习引擎OneFlow背后的技术实践>实录. 北京一流科技有限公司将自动编排并行模式.静态调度.流式执行等创新性技术相融合,构建成一套自动支持数据并行.模型并行及流水并行等多种模式的分布式深度学习框架,降低了分布式训练门槛.极大的提高了硬件使用率.该框架已经成功帮助众多头部互联网公司及人工智能企业提升了大模型训练效率,节约了硬件运营和使用成本,达到了降本增效…
nvidia nvlink互联与nvswitch介绍 https://www.chiphell.com/thread-1851449-1-1.html 差不多在一个月前在年度gtc会议上,老黄公开了dgx-2,这台售价高达399k美元,重达350磅的怪兽是专门为了加速ai负载而研制的,他被授予了“世界最大的gpu”称号.为什么它被赋予这个名字,它又是如何产生的,我们需要把时间倒退到几年之前. 动机在nvidia推出目前这个方案之前,为了获得更多的强力计算节点,多个GPU通过PCIe Switch…
背景 qGPU 是腾讯云推出的 GPU 共享技术,支持在多个容器间共享 GPU卡,并提供容器间显存.算力强隔离的能力,从而在更小粒度的使用 GPU 卡的基础上,保证业务安全,达到提高 GPU 使用率.降低客户成本的目的. qGPU on TKE 依托腾讯云 TKE 对外开源的 Nano GPU 调度框架,可实现对 GPU 算力与显存的细粒度调度,并支持多容器共享 GPU 与多容器跨 GPU 资源分配.同时依赖底层强大的 qGPU 隔离技术,可做到 GPU 显存和算力的强隔离,在通过共享使用 GP…
原文地址: https://blog.csdn.net/m0_37462765/article/details/74394932 版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明.本文链接:https://blog.csdn.net/yiran103/article/details/78532855———————————————— 英伟达gtx不仅可以用来玩游戏,就深度学习任务而言,gtx具备的算力并不亚于tesla专业显卡.并且,游戏卡的价…
AI解决方案:边缘计算和GPU加速平台 一.适用于边缘 AI 的解决方案 AI 在边缘蓬勃发展.AI 和云原生应用程序.物联网及其数十亿的传感器以及 5G 网络现已使得在边缘大规模部署 AI 成为可能.但它需要一个可扩展的加速平台,能够实时推动决策,并让各个行业都能为行动点(商店.制造工厂.医院和智慧城市)提供自动化智能.这将人.企业和加速服务融合在一起,从而使世界变得"更小". 更紧密. 适用于各行各业的边缘 AI 解决方案 卓越购物体验 借助 AI 驱动的见解,各地的大型零售商可让…
深度学习“引擎”之争:GPU加速还是专属神经网络芯片? 深度学习(Deep Learning)在这两年风靡全球,大数据和高性能计算平台的推动作用功不可没,可谓深度学习的“燃料”和“引擎”,GPU则是引擎的引擎,基本所有的深度学习计算平台都采用GPU加速.同时,深度学习已成为GPU提供商NVIDIA的一个新的战略方向,以及3月份的GTC 2015的绝对主角. 那么,GPU用于深度学习的最新进展如何?这些进展对深度学习框架有哪些影响?深度学习开发者应该如何发挥GPU的潜力?GPU与深度学习结合的前景…
[IT时代周刊编者按]云计算特有的优点和巨大的商业前景,让其成为了近年来的IT界最热门词汇之一.当然,这也与中国移动互联网的繁荣紧密相关,它们需要有相应的云计算服务作为支撑.但本文作者祁海江结合自身的经验,对国内目前的云计算服务进行观察后认为,国内云服务商多数采用过于简单粗放的“远程机房+移动大硬盘”模式,不能满足并行图形处理的计算需求,“应认清技术潮流,整合前沿计算工具,尽快推进云GPU并行计算服务,促进中国移动互联网整体技术水准攀升.”那么云GPU并行计算服务有多重要?作者在文中作了深入浅出…