1.几种不同的初始化方法 import torch.nn as nn embedding = torch.Tensor(3, 5) #如下6种初始化方法 #正态分布 nn.init.normal_(embedding) #均匀分布 nn.init.uniform_(embedding) #凯明均匀分布,mode可为fan_in 或 fan_out, fan_in正向传播时,方差一致;fan_out反向传播时,方差一致;nonlinearity为对应的激活函数 nn.init.kaiming_un…
# -*- coding: utf-8 -*- # author: huihui # date: 2020/1/31 7:58 下午 ''' 根据语料训练词向量,并保存向量文件 ''' import os import sys import gensim os.reload(sys) sys.setdefaultencoding('utf-8') # 需要提前分词 input_file = "corp_seg.txt" sentences = gensim.models.word2ve…
自然语言处理的第一步就是获取词向量,获取词向量的方法总体可以分为两种两种,一个是基于统计方法的,一种是基于语言模型的. 1 Glove - 基于统计方法 Glove是一个典型的基于统计的获取词向量的方法,基本思想是:用一个词语周边其他词语出现的次数(或者说两个词共同出现的次数)来表示每一个词语,此时每个词向量的维度等于词库容量,每一维存储着词库对应序号的词语出现在当前词语周围的次数,所有这些词向量组成的矩阵就是共现矩阵. 我们也可以换一个角度来理解共现矩阵,共现矩阵就是两个词同时出现的次数,共现…
paip.ikanalyzer 重加载词库的方法. 作者Attilax  艾龙,  EMAIL:1466519819@qq.com  来源:attilax的专栏 地址:http://blog.csdn.net/attilax if(WordsLibController.lastWordsLib!=null)   {   dictionary.disableWords(WordsLibController.lastWordsLib);      } WordsLibController.lastW…
删除PBL目录的方法:直接点删除键删除 加载PBL文件的方法:点Browse按钮选择PBL文件…
字节跳动火山引擎ImageX提供了一种能力,可以支持客户端android 直接解码HEIF 和HEIC图片,经过测试发现,可以免费使用: 一.阅前准备 HEIF图片格式是什么? 高效率图像格式(High Efficiency Image Format ,HEIF)最早被苹果公司的 iPhone 所使用,并且也将用于 Google 的 Android P 手机系统.微软也于最新放出的 Windows 10 Build 17123 预览版开始,新增了对 HEIF 图像格式的系统原生支持,所以系统极客…
1.有时候在使用jstree的时候我们想在它加载完成后立刻执行某个方法,于是我们可以用下面这个jstree自带的回调: .on('ready.jstree', function(event, obj) { fun1(); }); 2.如果在加载过程中想执行某个方法,于是我们可以用下面这个jstree自带的回调: .on('loaded.jstree', function(event, obj) { fun2(); });  …
转自:http://www.tensorflownews.com/2018/04/19/word2vec2/ 一.基于Hierarchical Softmax的word2vec模型的缺点 上篇说了Hierarchical Softmax ,使用霍夫曼树结构代替了传统的神经网络,可以提高模型训练的效率.但是如果基于Hierarchical Softmax的模型中所以词的位置是基于词频放置的霍夫曼树结构,词频越高的词在离根节点越近的叶子节点,词频越低的词在离根节点越远的叶子节点.也就是说当该模型在训…
在使用pytorch或tensorflow等神经网络框架进行nlp任务的处理时,可以通过对应的Embedding层做词向量的处理,更多的时候,使用预训练好的词向量会带来更优的性能.下面分别介绍使用gensim和torchtext两种加载预训练词向量的方法. 1.使用gensim加载预训练词向量    对于如下这样一段语料 test_sentence = """When forty winters shall besiege thy brow,And dig deep tren…
0. 词向量是什么 自然语言理解的问题要转化为机器学习的问题,第一步肯定是要找一种方法把这些符号数学化. NLP 中最直观,也是到目前为止最常用的词表示方法是 One-hot Representation,这种方法把每个词表示为一个很长的向量.这个向量的维度是词表大小,其中绝大多数元素为 0,只有一个维度的值为 1,这个维度就代表了当前的词. 举个栗子, “话筒”表示为 [0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ...] “麦克”表示为 [0 0 0 0 0 0 0 0 …
http://spaces.ac.cn/archives/4122/   关于词向量讲的很好 上边的形式表明,这是一个以2x6的one hot矩阵的为输入.中间层节点数为3的全连接神经网络层,但你看右边,不就相当于在$w_{ij}$这个矩阵中,取出第1.2行,这不是跟所谓的字向量的查表(从表中找出对应字的向量)是一样的吗?事实上,正是如此!这就是所谓的Embedding层,Embedding层就是以one hot为输入.中间层节点维数为字向量维数的全连接层(每一列对应一个中间层节点)!而这个全连…
目录 词向量简介 1. 基于one-hot编码的词向量方法 2. 统计语言模型 3. 从分布式表征到SVD分解 3.1 分布式表征(Distribution) 3.2 奇异值分解(SVD) 3.3 基于SVD的词向量方法 4. 神经网络语言模型(Neural Network Language Model) 5. Word2Vec 5.1 两个模型 5.2 两个提速手段 5.3一些预处理细节 5.4 word2vec的局限性 6. GloVe 6.1 统计共现矩阵 6.2 Glove的由来 6.3…
最近在家听贪心学院的NLP直播课.都是比较基础的内容.放到博客上作为NLP 课程的简单的梳理. 本节课程主要讲解的是词向量和Elmo.核心是Elmo,词向量是基础知识点. Elmo 是2018年提出的论文 <Deep contextualized word representtations>,在这篇论文中提出了很重要的思想Elmo,Elmo 是一种基于特征的语言模型,用预训练的语言模型,生成更好的特征. Elmo是一种新型深度语境化词表征,可对词进行复杂特征(如句法和语义)和词在语言语境中的变…
一.介绍 内容 将接触现代 NLP 技术的基础:词向量技术. 第一个是构建一个简单的 N-Gram 语言模型,它可以根据 N 个历史词汇预测下一个单词,从而得到每一个单词的向量表示. 第二个将接触到现代词向量技术常用的模型 Word2Vec.在实验中将以小说<三体>为例,展示了小语料在 Word2Vec 模型中能够取得的效果. 在最后一个将加载已经训练好的一个大规模词向量,并利用这些词向量来做一些简单的运算和测试,以探索词向量中包含的语义信息. 知识点 N-Gram(NPLM) 语言模型 Wo…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/232 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learning)>的全套学习笔记,对应的课程视频可以在 这里 查看…
上一节,我们介绍利用文本和知识库融合训练词向量的方法,如何更好的融合这些结构化知识呢?使得训练得到的词向量更具有泛化能力,能有效识别同义词反义词,又能学习到上下文信息还有不同级别的语义信息. 基于上述目标,我们尝试基于CBOW模型,将知识库中抽取的知识融合共同训练,提出LRWE模型.模型的结构图如下: 下面详细介绍该模型的思想和求解方法. 1. LWE模型     在Word2vec的CBOW模型中,通过上下文的词预测目标词,目标是让目标词在其给定上下文出现的概率最大,所以词向量训练的结果是与其…
有很多改进版的word2vec,但是目前还是word2vec最流行,但是Glove也有很多在提及,笔者在自己实验的时候,发现Glove也还是有很多优点以及可以深入研究对比的地方的,所以对其进行了一定的学习. 部分学习内容来源于小象学院,由寒小阳老师授课<深度学习二期课程> 高级词向量三部曲: 1.NLP︱高级词向量表达(一)--GloVe(理论.相关测评结果.R&python实现.相关应用) 2.NLP︱高级词向量表达(二)--FastText(简述.学习笔记) 3.NLP︱高级词向量…
原文地址:https://www.jianshu.com/p/b2da4d94a122 一.概述 本文主要是从deep learning for nlp课程的讲义中学习.总结google word2vector的原理和词向量的训练方法.文中提到的模型结构和word2vector的代码实现并不一致,但是可以非常直观的理解其原理,对于新手学习有一定的帮助.(首次在简书写技术博客,理解错误之处,欢迎指正) 二.词向量及其历史 1. 词向量定义   词向量顾名思义,就是用一个向量的形式表示一个词.为什么…
上一节,我们介绍利用文本和知识库融合训练词向量的方法,如何更好的融合这些结构化知识呢?使得训练得到的词向量更具有泛化能力,能有效识别同义词反义词,又能学习到上下文信息还有不同级别的语义信息. 基于上述目标,我们尝试基于CBOW模型,将知识库中抽取的知识融合共同训练,提出LRWE模型.模型的结构图如下: 下面详细介绍该模型的思想和求解方法. 1. LWE模型     在Word2vec的CBOW模型中,通过上下文的词预测目标词,目标是让目标词在其给定上下文出现的概率最大,所以词向量训练的结果是与其…
DeepNLP的核心关键/NLP语言模型 /word embedding/word2vec Indexing: 〇.序 一.DeepNLP的核心关键:语言表示(Representation) 二.NLP词的表示方法类型 1.词的独热表示one-hot representation 2.词的分布式表示distributed representation 三.NLP语言模型 四.词的分布式表示 1. 基于矩阵的分布表示 2. 基于聚类的分布表示 3. 基于神经网络的分布表示,词嵌入( word em…