halcon小结】的更多相关文章

持更 应用范围 (罗列自官方帮助文档,以后有空了按照需求展开叙述) 1. 安全系统 2. 表面检测 3. 定位 4. 二维测量比较 5. 二维码识别 6. 二维位置定位 7. 二维物体识别 8. 光学字符识别 9. 机器人视觉 10. 交通监视和驾驶辅助系统 11. 三维测量比较 12. 三维物体定位 13. 三维物体识别 14. 特征检测 15. 完整性检测 16. 颜色检测 17. 一维码识别 18. 印刷检测 方法 Blob分析 对前景/背景分离后的二值图像,进行连通域提取和标记.核心思想…
学了这么久的halcon,感觉还是没有摸到门路. 记录一下这么久以来经历过的学习阶段: 看冈萨雷斯<数字图像处理>这本书,使用halcon做练习. 我实际上只比较完整地看了这本书的形态学处理那一章节,当初信誓旦旦说要看完这本书的,结果看不下去了.主要有几点: 1. 这本书偏理论,里面的很多算法使用什么语言都可以自己去实现一下,自己动手对于理解理论很有帮助, 但是我的目的并不是把理论搞的很透彻,而是要实际使用,那些算法的实现很多在halcon中已经有定义好的算子了: 2. 看起来太慢,完全赶不上…
一直想写个总结,不过实在太忙了,所以一直拖啊拖啊,拖到现在,不过也好,有了这段时间的沉淀,发现自己又有了小小的进步.哈哈...... 原想框架开发的相关开发步骤.文档.代码.功能.部署等都简单的讲过了,就此了结本系列文章,经过这段日子的深入学习,发现本系列文章讲的还是太肤浅了,很多东西都没有讲到,也没有说明白.所以过段时间空闲些了,会继续从理论上来讲解怎么去设计一个框架(也算是给自己定个目标,加加压力),有了前面的代码了解,再学习理论相信大家也更容易接受了. 小结 学习如逆水行舟,不进则退,当能…
Python自然语言处理工具小结 作者:白宁超 2016年11月21日21:45:26 目录 [Python NLP]干货!详述Python NLTK下如何使用stanford NLP工具包(1) [Python NLP]Python 自然语言处理工具小结(2) [Python NLP]Python NLTK 走进大秦帝国(3) [Python NLP]Python NLTK获取文本语料和词汇资源(4) [Python NLP]Python NLTK处理原始文本(5) 1 Python 的几个自…
上一篇文章整理了Base64算法的相关知识,严格来说,Base64只能算是一种编码方式而非加密算法,这一篇要说的MD5,其实也不算是加密算法,而是一种哈希算法,即将目标文本转化为固定长度,不可逆的字符串(消息摘要). 简单了解 MD5(Message Digest Algorithm 5),翻译过来是消息摘要算法第五版,按照惯例,我们推理可能也有MD2,MD3这样名字的历史版本.. 即使完全不了解这个算法的原理,我们也可以从命名中看出一些眉道,所谓摘要,就是一个简短的概括,像我写过的毕业论文,上…
iOS--->微信支付小结 说起支付,除了支付宝支付之外,微信支付也是我们三方支付中最重要的方式之一,承接上面总结的支付宝,接下来把微信支付也总结了一下 ***那么首先还是由公司去创建并申请使用微信支付所需的信息 1.接下来就是微信支付的集成步骤了,参考着开发文档来,非常简单的 下载SDK,项目中导入所需的文件WxPay文件夹中,注意其中的.a文件容易丢失 2.根据文档对其中支持的非arc进行设置 3.设置微信支付的URL types 4.接下来就是代码内部的事情了,做支付我们知道首先需要在ap…
一:编辑被键盘遮挡的问题 参考自:http://blog.csdn.net/windkisshao/article/details/21398521 1.自定方法 ,用于移动视图 -(void)moveInputBarWithKeyboardHeight:(float)_CGRectHeight withDuration:(NSTimeInterval)_NSTimeInterval; 2.注册监听 NSNotificationCenter *defaultCenter = [NSNotific…
K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用.比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出了.这里就运用了KNN的思想.KNN方法既可以做分类,也可以做回归,这点和决策树算法相同. KNN做回归和分类的主要区别在于最后做预测时候的决策方式不同.KNN做分类预测时,一般是选择多数表决法,即训练集里和预测的样本特征最近的K个样本,预测为里面有最多类别数的类别.而KNN做回归时,一般是选择平均…
在Bagging与随机森林算法原理小结中,我们对随机森林(Random Forest, 以下简称RF)的原理做了总结.本文就从实践的角度对RF做一个总结.重点讲述scikit-learn中RF的调参注意事项,以及和GBDT调参的异同点. 1. scikit-learn随机森林类库概述 在scikit-learn中,RF的分类类是RandomForestClassifier,回归类是RandomForestRegressor.当然RF的变种Extra Trees也有, 分类类ExtraTreesC…
在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合.本文就对集成学习中Bagging与随机森林算法做一个总结. 随机森林是集成学习中可以和梯度提升树GBDT分庭抗礼的算法,尤其是它可以很方便的并行训练,在如今大数据大样本的的时代很有诱惑力. 1.  bagging的原理 在集成学习原理小结中,我们给Bagging画了下面一张原理图. 从上图可以看出,…