图解红黑树RBT】的更多相关文章

红黑树的性质与定义 红黑树(red-black tree) 是一棵满足下述性质的二叉查找树: 1. 每一个结点要么是红色,要么是黑色. 2. 根结点是黑色的. 3. 所有叶子结点都是黑色的(实际上都是Null指针,下图用NIL表示).叶子结点不包含任何关键字信息,所有查询关键字都在非终结点上. 4. 每个红色结点的两个子节点必须是黑色的.换句话说:从每个叶子到根的所有路径上不能有两个连续的红色结点 5. 从任一结点到其每个叶子的所有路径都包含相同数目的黑色结点 黑深度 ——从某个结点x出发(不包…
作为一种数据结构.红黑树可谓不算朴素.由于各种宣传让它过于神奇,网上搜罗了一大堆的关于红黑树的文章,不外乎千篇一律,介绍概念,分析性能,贴上代码,然后给上罪恶的一句话.它最坏情况怎么怎么地...              我们想,一棵二叉树怎么就是最坏情况,那就是它退化为一个链表,这样查找就成了遍历.问题是,平衡二叉树怎么会退回链表!它是怎么保持平衡的?能不能简单地阐述?当然能够.一般的讲述红黑树的资料都是直接给出黑节点同样.红节点不连续等来作为一个足够硬可是又不是太硬的约束来保证树的平衡,但其…
一.前言 0tnv1e.png 为啥要学红黑树吖? 因为笔者最近在赶项目的时候,不忘抽出时间来复习 Java 基础知识,现在准备看集合的源码啦啦.听闻,HashMap 在 jdk 1.8 的时候,底层的数据结构发生了变化,变成了数组+链表+红黑树.很好,没了解过红黑树,所以就趁今天闲暇学习一下啦 二.什么是红黑树? 2.1 有啥用处? 红黑树从本质上来说就是一颗二叉查找树,但是在二叉树的基础上增加了着色相关的性质,使得红黑树可以保证相对平衡,从而保证红黑树的增删改查的时间复杂度最坏也能达到 O(…
红黑树 1.红黑树介绍 年写的一篇论文中获得的.它是复杂的,但它的操作有着良好的最坏情况运行时间,并且在实践中是高效的:它可以在O(log n)时间内做查找,插入和删除,这里的n是树中元素的数目. 2.这篇文章的意义 我写这篇文章,是因为听到大家说,红黑树不好理解,并且写代码的时候调试不太方便.对于增删查改其中的两种操作插入和删除来说,调试的结果看起来特别不方便,因为我们看不到图,只是看到了树的某种遍历,然后根据其顺序再在纸上将其画出来.我现在就是要用canvas将其画出来,方便大家理解红黑树的…
转载注明出处:http://blog.csdn.net/mxway/article/details/29216199 本篇文章并没有详细的讲解红黑树各方面的知识,只是以图形的方式对红黑树插入节点需要进行调整的过程进行的解释. 最近在看stl源码剖析,看到map底层红黑树的实现.为了加深对于红黑树的理解就自己动手写了红黑树插入的实现.关于红黑树插入节点后破坏红黑树性质的几种情况,可以在网上搜到很多相关的信息.下面用图说明插入新节点时红黑树所做的调整.插入的序列分别是30,40,50,20,35,1…
http://www.cnblogs.com/yangecnu/p/Introduce-Binary-Search-Tree.html 前文介绍了符号表的两种实现,无序链表和有序数组,无序链表在插入的时候具有较高的灵活性,而有序数组在查找时具有较高的效率,本文介绍的二叉查找树(Binary Search Tree,BST)这一数据结构综合了以上两种数据结构的优点. 二叉查找树具有很高的灵活性,对其优化可以生成平衡二叉树,红黑树等高效的查找和插入数据结构,后文会一一介绍. 一 定义 二叉查找树(B…
LLRB——红黑树的现代实现 一.本文内容 以一种简明易懂的方式介绍红黑树背后的逻辑实现2-3-4树,以及红黑树的插入.删除操作,重点在2-3-4树与红黑树的对应关系上,并理清红黑树相关操作的来龙去脉.抛弃以往复杂的实现,而分析红黑树的一种简单实现LLRB.     二.算法应用 红黑树,给人以强烈的第一听觉冲击力——红与黑,好像很高端的感觉.事实上的确如此,红黑树是一种高级数据结构,在C++.Java的标准库里作为set.map的底层数据结构实现,以及linux中进程的公平调度.     三.…
二叉查找树(BST),平衡二叉查找树(AVL),红黑树(RBT),B~/B+树(B-tree).这四种树都具备下面几个优势: (1) 都是动态结构.在删除,插入操作的时候,都不需要彻底重建原始的索引树.最多就是执行一定量的旋转,变色操作来有限的改变树的形态.而这些操作所付出的代价都远远小于重建一棵树.这一优势在<查找结构专题(1):静态查找结构概论 >中讲到过. (2) 查找的时间复杂度大体维持在O(log(N))数量级上.可能有些结构在最差的情况下效率将会下降很快,比如二叉树 1.二叉查找树…
数据结构与算法--从平衡二叉树(AVL)到红黑树 上节学习了二叉查找树.算法的性能取决于树的形状,而树的形状取决于插入键的顺序.在最好的情况下,n个结点的树是完全平衡的,如下图"最好情况"所示,此时树的高度为⌊log2 n⌋ + 1,所以时间复杂度为O(lg n)当我们将键以升序或者降序插入的时候,得到的是一棵斜树,如下图中的"最坏情况",树的高度为n,时间复杂度也变成了O(n) 在最坏情况下,二叉查找树的查找和插入效率很低.为了解决这个问题,引出了平衡二叉树(AV…
为了接下来能更好的学习TreeMap和TreeSet,讲解一下二叉树,AVL树和红黑树. 1. 二叉查找树 2. AVL树 2.1. 树旋转 2.1.1. 左旋和右旋 2.1.2. 左左,右右,左右,右左 2.2. 删除 3. 红黑树 3.1. 插入 3.2. 删除 4. 参考文章 1. 二叉查找树 在讲AVL树和红黑树之前,作为铺垫必须先说下二叉树. 二叉树本身不必再说,一棵二叉树称为二叉查找树的条件如下: 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值. 若任意节点的右子…