PCA——主成分分析 简介 PCA全称Principal Component Analysis,即主成分分析,是一种常用的数据降维方法.它可以通过线性变换将原始数据变换为一组各维度线性无关的表示,以此来提取数据的主要线性分量. z=wTx 其中,z为低维矩阵,x为高维矩阵,w为两者之间的映射关系.假如我们有二维数据(原始数据有两个特征轴——特征1和特征2)如下图所示,样本点分布为斜45°的蓝色椭圆区域. PCA算法认为斜45°为主要线性分量,与之正交的虚线是次要线性分量(应当舍去以达到降维的目…