上一篇演示了纯手动添加隐藏层,这次使用gluon让代码更精减,代码来自:https://zh.gluon.ai/chapter_supervised-learning/mlp-gluon.html from mxnet import gluon from mxnet import ndarray as nd import matplotlib.pyplot as plt import mxnet as mx from mxnet import autograd def transform(dat…
http://www.cnblogs.com/xing901022/p/9332529.html 本章主要讲解了逻辑回归相关的问题,比如什么是分类?逻辑回归如何定义损失函数?逻辑回归如何求最优解?如何理解决策边界?如何解决多分类的问题? 更多内容参考 机器学习&深度学习 有的时候我们遇到的问题并不是线性的问题,而是分类的问题.比如判断邮件是否是垃圾邮件,信用卡交易是否正常,肿瘤是良性还是恶性的.他们有一个共同点就是Y只有两个值{0,1},0代表正类,比如肿瘤是良性的:1代表负类,比如肿瘤是恶性的…
代码来自:https://zh.gluon.ai/chapter_supervised-learning/linear-regression-gluon.html from mxnet import ndarray as nd from mxnet import autograd from mxnet import gluon num_inputs = 2 num_examples = 1000 true_w = [2, -3.4] true_b = 4.2 X = nd.random_norm…
在分类问题中,你要预测的变量…
接上一篇机器学习笔记(3):多类逻辑回归继续,这次改用gluton来实现关键处理,原文见这里 ,代码如下: import matplotlib.pyplot as plt import mxnet as mx from mxnet import gluon from mxnet import ndarray as nd from mxnet import autograd def transform(data, label): return data.astype('float32')/255,…
原文链接:https://blog.csdn.net/gwplovekimi/article/details/80288964 本博文为逻辑斯特回归的学习笔记.由于仅仅是学习笔记,水平有限,还望广大读者朋友多多赐教. 假设现在有一些数据点,我们用一条直线对这些点进行拟合(该直线称为最佳拟合直线),这个拟合的过程就称为回归. 利用Logistic(逻辑斯蒂)回归是一个分类模型而不回归模型.其进行分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类.这里的“回归”一词源于最佳拟合,表…
机器学习实战(Machine Learning in Action)学习笔记————05.Logistic回归 关键字:Logistic回归.python.源码解析.测试作者:米仓山下时间:2018-10-26机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbharri…
Keras是一个深度学习库,包含高效的数字库Theano和TensorFlow.是一个高度模块化的神经网络库,支持CPU和GPU. 本文学习的目的是学习如何加载CSV文件并使其可供Keras使用,如何使用Keras创建一个回归问题的神经网络模型,如何使用scikit-learn和Keras一起使用交叉验证来评估模型,如何进行数据准备以提高Keras模型的技能,如何使用Keras调整模型的网络拓扑. 前期准备之Keras的scikit-learn接口包装器 Git地址:https://github…
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常详细,同时许多人对官方文档的理解和结构上都不能很好地把握,我也打算好好学习sklearn,这可能是机器学习的神器),下面先简单介绍一下sklearn. 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了,scikit-learn简称sklearn,支持包括分类,回归…
机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因此将机器学习中常见的原理性问题记录下来,保持对各个机器学习算法原理和特点的熟练度. 本文总结了机器学习一些面试题和笔试题,以便自己学习,当然了也为了方便大家,题目是网上找的额,如果有侵权请联系小编,还有,不喜勿喷,谢谢!!! 算法分类 下面图片是借用网友做的,很好的总结了机器学习的算法分类: 问答题…