Mutiple-Image SSR 关键的技术imformation fusion 1. 将单一场景的多图像经过Resnet, 其中每张图片的维度变为了输入的两倍.同时,这些输入的单一场景的多图像进行图像配准(image registration)来确定图像之间的 子像素的位移(位移值乘以2以适配于Resnet的输出) 2. 经过Resnet的结果与子像素移位一起使用中值移位和加法方法组成初始的高分率图像,这时候维度再次增加,为原来的4倍. 3. 初始的高分辨率图像再经过迭代的EvoIM过程得到…
from:http://blog.sciencenet.cn/blog-830496-679604.html 深度学习(Deep Learning,DL)的相关资料总结 有人认为DL是人工智能的一场革命,貌似很NB.要好好学学. 0    第一人(提出者)     好像是由加拿大多伦多大学计算机系(Department of Computer Science ,University of Toronto) 的教授Geoffrey E. Hinton于2006年提出.    其个人网站是:    …
Adit Deshpande CS Undergrad at UCLA ('19) Blog About The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3) Introduction Link to Part 1Link to Part 2 In this post, we’ll go into summarizing a lot of the new and important develo…
申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎样的表示才有用呢? 1995 年前后,Bruno Olshausen和 David Field 两位学者任职 Cornell University,他们试图同时用生理学和计算机的手段,双管齐下,研究视觉问题. 他们收集了很多黑白风景照片,从这些照片中,提取出400个小碎片,每个照片碎片的尺寸均为 16x1…
http://blog.csdn.net/zouxy09/article/details/8775360 一.概述 Artificial Intelligence,也就是人工智能,就像长生不老和星际漫游一样,是人类最美好的梦想之一.虽然计算机技术已经取得了长足的进步,但是到目前为止,还没有一台电脑能产生“自我”的意识.是的,在人类和大量现成数据的帮助下,电脑可以表现的十分强大,但是离开了这两者,它甚至都不能分辨一个喵星人和一个汪星人. 图灵(图灵,大家都知道吧.计算机和人工智能的鼻祖,分别对应于…
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04-08 声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主删除.…
Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0  2013-04-08   声明: 1)该Deep Learning的学习系列是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应.如果某部分不小心侵犯了大家的利益,还望海涵,并联系博主…
十.总结与展望 1)Deep learning总结 深度学习是关于自动学习要建模的数据的潜在(隐含)分布的多层(复杂)表达的算法.换句话来说,深度学习算法自动的提取分类需要的低层次或者高层次特征. 高层次特征,一是指该特征可以分级(层次)地依赖其他特征,例如:对于机器视觉,深度学习算法从原始图像去学习得到它的一个低层次表达,例如边缘检测器, 小波滤波器等,然后在这些低层次表达的基础上再建立表达,例如这些低层次表达的线性或者非线性组合,然后重复这个过程,最后得到一个高层次的表达. Deep lea…
目录: 一.概述 二.背景 三.人脑视觉机理 四.关于特征        4.1.特征表示的粒度        4.2.初级(浅层)特征表示        4.3.结构性特征表示        4.4.需要有多少个特征? 五.Deep Learning的基本思想 六.浅层学习(Shallow Learning)和深度学习(Deep Learning) 七.Deep learning与Neural Network 八.Deep learning训练过程        8.1.传统神经网络的训练方法…
from:http://blog.csdn.net/abcjennifer/article/details/7826917 Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得. Key Words:有监督学习与无监督学习,分类.回归,密度估计.聚类,深度学习,Sparse DBN, 1. 有监督学习和无监督学习 给定一组数据(input,target)为Z=(X,…