一.各库功能说明 pdfminer----用于读取pdf文件的内容,python3安装pdfminer3k jieba----用于中文分词 wordcloud----用于生成词云 matplotlib----用于将词云可视化 这几个库的顺序也对应程序的顺序: 生使用pdfminer读取pdf文件的内容,然后使用jieba对内容进行中文分词,再然后使用wordcloud基于分词生成词云,最后使用matplotlib将词云可视化 二.程序源码 from urllib.request import u…
词云 词云是啥?词云突出一个数据可视化,酷炫.以前以为很复杂,不想python已经有成熟的工具来做词云.而我们要做的就是准备关键词数据,挑一款字体,挑一张模板图片,非常非常无脑.准备好了吗,快跟我一起动手吧 模块 本案例基于python3.6, 相关模块如下,安装都是直接 pip install <模块名>: wordcloud 作用如其名.本例核心模块,它把我们带权重的关键词渲染成词云 matplotlib 绘图模块,主要作用是把wordcloud生成的图片绘制出来并在窗口展示 numpy…
一.爬虫前准备 1.工具:pychram(python3.7) 2.库:random,requests,fake-useragent,json,re,bs4,matplotlib,worldcloud,numpy,PIL,jieba random:生成随机数 requests:发送请求获取网页信息 fake-useragent:生成代理服务器 json:数据转换 re:用于正则匹配 bs4:数据过滤 matpotlib:图像处理 worldcloud:生成词云 numpy:图像处理 PIL:图像…
利用jieba库和wordcloud生成中文词云. jieba库:中文分词第三方库 分词原理: 利用中文词库,确定汉字之间的关联概率,关联概率大的生成词组 三种分词模式: 1.精确模式:把文本精确的切分开,不存在冗余单词 2.全模式:把文本中所有可能的词语都扫描出来,有冗余     3.搜索引擎模式:在精确模式基础上,对长词再次切分 常用函数: jieba.lcut(s)       #精确模式,返回列表类型的分词结果 jieba.lcut(s,cut_all=True)        #全模式…
一.起因: 昨天在简书上看到这么一篇文章<中国的父母,大都有毛病>,看完之后个人是比较认同作者的观点. 不过,翻了下评论,发现评论区争议颇大,基本两极化.好奇,想看看整体的评论是个什么样,就写个爬虫,做了词云. 二.怎么做: ① 观察页面,找到获取评论的请求,查看评论数据样式,写爬虫 ② 用 jieba 模块,将爬取的评论做分词处理 ③ 用 wordcloud 模块,生成词云 三.代码如下: #!/usr/bin/env python3 # -*- coding: utf-8 -*- impo…
词云图是根据词出现的频率生成词云,词的字体大小表现了其频率大小. 写在前面: 用wc.generate(text)直接生成词频的方法使用很多,所以不再赘述. 但是对于根据generate_from_frequencies()给定词频如何画词云图的资料找了很久,下面只讲这种方法. generate_from_frequencies适用于我已知词及其对应的词频是多少(已有数据库),不需要分词的情况下. 官方文档说generate_from_frequencies函数的参数是array of tupl…
import jieba #第一题 txt='Python是最有意思的编程语言' words=jieba.lcut(txt) #精确分词 words_all=jieba.lcut(txt,cut_all=True) #全分词 words_sh=jieba.lcut_for_search(txt) #搜索分词 print(words) print(words_all) print(words_sh) #第二题 txt1="今天晚上我吃了意大利面" jieba.add_word("…
网上大多数词云的代码都是基于原始文本生成,这里写一个根据词频生成词云的小例子,都是基于现成的函数. 另外有个在线制作词云的网站也很不错,推荐使用:WordArt 安装词云与画图包 pip3 install wordcloud pip3 install matplotlib word_cloud.py(生成词云的程序) from wordcloud import WordCloud import matplotlib.pyplot as plt # 生成词云 def create_word_clo…
1.jieba库,介绍如下: (1) jieba 库的分词原理是利用一个中文词库,将待分词的内容与分词词库进行比对,通过图结构和动态规划方法找到最大概率的词组:除此之外,jieba 库还提供了增加自定义中文单词的功能. (2) jieba 库支持3种分词模式: 精确模式:将句子最精确地切开,适合文本分析. 全模式:将句子中所以可以成词的词语都扫描出来,速度非常快,但是不能消除歧义. 搜索引擎模式:在精确模式的基础上,对长分词再次切分,提高召回率,适合搜索引擎分词. 2.按安装jieba库 (1)…
import xlrd import jieba import pymysql import matplotlib.pylab as plt from wordcloud import WordCloud from collections import Counter import numpy as np def getExcelData(excel,txt): readbook = xlrd.open_workbook(excel) sheet = readbook.sheet_by_inde…