Spark on Yarn年度知识整理】的更多相关文章

大数据体系结构: Spark简介 Spark是整个BDAS的核心组件,是一个大数据分布式编程框架,不仅实现了MapReduce的算子map 函数和reduce函数及计算模型,还提供更为丰富的算子,如filter.join.groupByKey等.是一个用来实现快速而同用的集群计算的平台. Spark将分布式数据抽象为弹性分布式数据集(RDD),实现了应用任务调度.RPC.序列化和压缩,并为运行在其上的上层组件提供API.其底层采用Scala这种函数式语言书写而成,并且所提供的API深度借鉴Sca…
不多说,直接上干货! 问题详情 电脑8G,目前搭建3节点的spark集群,采用YARN模式. master分配2G,slave1分配1G,slave2分配1G.(在安装虚拟机时) export SPARK_WORKER_MERMORY=1g  (在spark-env.sh) export JAVA_HOME=/usr/local/jdk/jdk1..0_60 (必须写) export SCALA_HOME=/usr/local/scala/scala- (必须写) export HADOOP_H…
不多说,直接上干货! Spark Standalone的几种提交方式 别忘了先启动spark集群!!! spark-shell用于调试,spark-submit用于生产. 1.spark-shell client [spark@master spark-1.6.1-bin-hadoop2.6]$ bin/spark-shell --master spark://master:7077 --deploy-mode client --total-executor-cores 4 --executor…
不多说,直接上干货! 问题详情 电脑8G,目前搭建3节点的spark集群,采用YARN模式. master分配2G,slave1分配1G,slave2分配1G.(在安装虚拟机时) export SPARK_WORKER_MERMORY=1g  (在spark-env.sh) export JAVA_HOME=/usr/local/jdk/jdk1.8.0_60 (必须写) export SCALA_HOME=/usr/local/scala/scala-2.10.5 (必须写) export H…
事件(Event)知识整理,本文由网上资料整理而来,需要的朋友可以参考下   鼠标事件 鼠标移动到目标元素上的那一刻,首先触发mouseover 之后如果光标继续在元素上移动,则不断触发mousemove 如果按下鼠标上的设备(左键,右键,滚轮--),则触发mousedown 当设备弹起的时候触发mouseup 目标元素的滚动条发生移动时(滚动滚轮/拖动滚动条..)触发scroll 滚动滚轮触发mousewheel,这个要区别于scroll 鼠标移出元素的那一刻,触发mouseout 事件注册…
Spark on YARN的原理就是依靠yarn来调度Spark,比默认的Spark运行模式性能要好的多,前提是首先部署好hadoop HDFS并且运行在yarn上,然后就可以开始部署spark on yarn了,假设现在准备环境已经部署完毕,这里是在CDH 环境下部署Spark 除了上面的环境准备,安装Spark前,还应该保证Scala正常安装,基于Scala的情况下,就可以开始部署Spark了, 首先还是解压Spark,安装位置就是/bigdata/spark -bin-hadoop2..t…
参考原文:http://blog.javachen.com/2015/06/09/memory-in-spark-on-yarn.html?utm_source=tuicool 运行文件有几个G大,默认的spark的内存设置就不行了,需要重新设置.还没有看Spark源码,只能先搜搜相关的博客解决问题. 按照Spark应用程序中的driver分布方式不同,Spark on YARN有两种模式: yarn-client 模式. yarn-cluster模式.当在YARN上运行Spark作业,每个Sp…
最近看到明风的关于数据挖掘平台下实用Spark和Yarn来做推荐的PPT,感觉很赞,现在基于大数据和快速计算方面技术的发展很快,随着Apache基金会上发布的一个个项目,感觉真的新技术将会不断出现在大家的面前. 作为技术发烧友,作为一个看客,来围观下,不过从PPT中列出来的技术来看,未来的发展趋势还是说是有的,而且还是很有发展前景的. 现在Spark和Yarn也就发布2年多的时间,随着社区力量的跟上,不断的将之前的项目都放到一个更好的资源架构的整合上来实现.特别是放到内存上来实现,在速度和效率上…
当在YARN上运行Spark作业,每个Spark executor作为一个YARN容器运行.Spark可以使得多个Tasks在同一个容器里面运行. 以下参数配置为例子: spark-submit --master yarn-cluster   #使用集群调度模式(一般使用这个参数) --num-executors  132      # executor 数量 --executor-cores  2        #设置单个executor能并发执行task数,根据job设置,推荐值2-16 (…
运行 Spark on YARN Spark 0.6.0 以上的版本添加了在yarn上执行spark application的功能支持,并在之后的版本中持续的 改进.关于本文的内容是翻译官网的内容,大家也可参考spark的官网地址:http://spark.apache.org/docs/latest/running-on-yarn.html 1. 在yarn上执行spark 需要确保提交spark任务的客户端服务器上, HADOOP_CONF_DIR 或者 YARN_CONF_DIR 目录中包…