1. Transformer模型 在Attention机制被提出后的第3年,2017年又有一篇影响力巨大的论文由Google提出,它就是著名的Attention Is All You Need[1].这篇论文中提出的Transformer模型,对自然语言处理领域带来了巨大的影响,使得NLP任务的性能再次提升一个台阶. Transformer是一个Seq2Seq架构的模型,所以它也由Encoder与Decoder这2部分组成.与原始Seq2Seq 模型不同的是:Transformer模型中没有RN…
在NLP中深度学习模型何时需要树形结构? 前段时间阅读了Jiwei Li等人[1]在EMNLP2015上发表的论文<When Are Tree Structures Necessary for Deep Learning of Representations?>,该文主要对比了基于树形结构的递归神经网络(Recursive neural network)和基于序列结构的循环神经网络(Recurrent neural network),在4类NLP任务上进行实验,来讨论深度学习模型何时需要树形结…
回望2017,基于深度学习的NLP研究大盘点 雷锋网 百家号01-0110:31 雷锋网 AI 科技评论按:本文是一篇发布于 tryolabs 的文章,作者 Javier Couto 针对 2017 年基于深度学习的自然语言处理研究进行了大盘点.雷锋网 AI 科技评论根据原文进行了编译. 在过去的几年里,深度学习(DL)架构和算法在诸如图像识别和语音处理等领域取得了世人瞩目的进步.然而在最开始的时候,深度学习在自然语言处理(Natural Language Processing, NLP)领域的…