首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
CNN的Pytorch实现(LeNet)
】的更多相关文章
CNN的Pytorch实现(LeNet)
CNN的Pytorch实现(LeNet) 上次写了一篇CNN的详解,可是累坏了老僧我.写完后拿给朋友看,朋友说你这Pytorch的实现方式对于新人来讲会很不友好,然后反问我说里面所有的细节你都明白了吗.我想想,的确如此.那个源码是我当时<动手学pytorch>的时候整理的,里面有很多包装过的函数,对于新入门的人来讲,的确是个大问题.于是,痛定思痛的我决定重新写Pytorch实现这一部分,理论部分我就不多讲了,咱们直接分析代码,此代码是来自Pytorch官方给出的LeNet Model.你可…
深度学习识别CIFAR10:pytorch训练LeNet、AlexNet、VGG19实现及比较(三)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com VGGNet在2014年ImageNet图像分类任务竞赛中有出色的表现.网络结构如下图所示: 同样的,对32*32的CIFAR10图片,网络结构做了微调:删除了最后一层最大池化,具体参见网络定义代码,这里采用VGG19,并加入了BN: ''' 创建VGG块 参数分别为输入通道数,输出通道数,卷积层个数,是否做最大池化 ''' def make_vgg_block(in_channel, out_ch…
深度学习识别CIFAR10:pytorch训练LeNet、AlexNet、VGG19实现及比较(二)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com AlexNet在2012年ImageNet图像分类任务竞赛中获得冠军.网络结构如下图所示: 对CIFAR10,图片是32*32,尺寸远小于227*227,因此对网络结构和参数需做微调: 最后一个max-pool层删除 网络定义代码如下: class AlexNet(nn.Module): def __init__(self): super(AlexNet, self).__init__() self…
深度学习识别CIFAR10:pytorch训练LeNet、AlexNet、VGG19实现及比较(一)
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 前面几篇文章介绍了MINIST,对这种简单图片的识别,LeNet-5可以达到99%的识别率. CIFAR10是另一个著名的深度学习图像分类识别数据集,比MINIST更复杂,而且是RGB彩色图片. 看看较简单的LeNet-5可以达到多少准确率.网络结构基本和前面MINIST代码中的差不多,主要是输入图片的通道数不同,代码如下: # -*- coding:utf-8 -*- u"""…
深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 关于卷积神经网络CNN,网络和文献中有非常多的资料,我在工作/研究中也用了好一段时间各种常见的model了,就想着简单整理一下,以备查阅之需.如果读者是初接触CNN,建议可以先看一看"Deep Learning(深度学习)学习笔记整理系列"中关于CNN的介绍[1],是介绍我们常说的Lenet为例,相信会对初学者有帮助. Le…
大话CNN经典模型:LeNet
近几年来,卷积神经网络(Convolutional Neural Networks,简称CNN)在图像识别中取得了非常成功的应用,成为深度学习的一大亮点.CNN发展至今,已经有很多变种,其中有几个经典模型在CNN发展历程中有着里程碑的意义,它们分别是:LeNet.Alexnet.Googlenet.VGG.DRL等,接下来将分期进行逐一介绍.在之前的文章中,已经介绍了卷积神经网络(CNN)的技术原理,细节部分就不再重复了,有兴趣的同学再打开链接看看(大话卷积神经网络),在此简单回顾一下C…
动手学习Pytorch(7)--LeNet
Convolutional Neural Networks 使用全连接层的局限性: 图像在同一列邻近的像素在这个向量中可能相距较远.它们构成的模式可能难以被模型识别. 对于大尺寸的输入图像,使用全连接层容易导致模型过大. 使用卷积层的优势: 卷积层保留输入形状. 卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大. LeNet 模型 LeNet分为卷积层块和全连接层块两个部分.下面我们分别介绍这两个模块. 卷积层块里的基本单位是卷积层后接平均池化层:卷积层用来识别图…
卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning(转)
参考:http://blog.csdn.net/xbinworld/article/details/45619685…
超简单!pytorch入门教程(五):训练和测试CNN
我们按照超简单!pytorch入门教程(四):准备图片数据集准备好了图片数据以后,就来训练一下识别这10类图片的cnn神经网络吧. 按照超简单!pytorch入门教程(三):构造一个小型CNN构建好一个神经网络,唯一不同的地方就是我们这次训练的是彩色图片,所以第一层卷积层的输入应为3个channel.修改完毕如下: 我们准备了训练集和测试集,并构造了一个CNN.与之前LeNet不同在于conv1的第一个参数1改成了3 现在咱们开始训练 我们训练这个网络必须经过4步: 第一步:将输入input向前…
CNN网络架构演进:从LeNet到DenseNet
卷积神经网络可谓是现在深度学习领域中大红大紫的网络框架,尤其在计算机视觉领域更是一枝独秀.CNN从90年代的LeNet开始,21世纪初沉寂了10年,直到12年AlexNet开始又再焕发第二春,从ZF Net到VGG,GoogLeNet再到ResNet和最近的DenseNet,网络越来越深,架构越来越复杂,解决反向传播时梯度消失的方法也越来越巧妙.新年有假期,就好好总结一波CNN的各种经典架构吧,领略一下CNN的发展历程中各路大神之间的智慧碰撞之美. 上面那图是ILSVRC历年的Top-5错误率,…