factor graph model】的更多相关文章

主实验 文慧:用户,商品,评分,review,ranking. 数据集:数据规模,论文源代码…
转自:http://www.cnblogs.com/wentingtu/archive/2012/05/28/2521166.html 推荐中对graph model的研究主要有两个方面,一个是如何构图,另一个是如何在图上做ranking. 关于构图问题,取决于数据,首先考虑如果我们只有user item的数据,那么最简单的方法就是构造二分图,两类节点,user节点和item节点,如果user喜欢item,就在他们中间连一条边. 如果我们有了用户的profile信息,和item的content信…
下面就开始讲讲概率图中的Factor Graph.概率图博大精深,非我等鼠辈能够完全掌握,我只是通过研究一些通用的模型,对概率图了解了一点皮毛.其实我只是从概率这头神兽身上盲人摸象地抓掉几根毛,我打算就讲讲我抓掉这几根毛. Factor Graph 是概率图的一种,概率图有很多种,最常见的就是Bayesian Network (贝叶斯网络)和Markov Random Fields(马尔可夫随机场).在概率图中,求某个变量的边缘分布是常见的问题.这问题有很多求解方法,其中之一就是可以把Bayes…
参考链接1: 参考链接2: 参考ppt3: Factor Graph 是概率图的一种,概率图有很多种,最常见的就是Bayesian Network (贝叶斯网络)和Markov Random Fields(马尔可夫随机场).在概率图中,求某个变量的边缘分布是常见的问题.这问题有很多求解方法,其中之一就是可以把Bayesian Network和Markov Random Fields 转换成Facor Graph,然后用sum-product算法求解. 基于Factor Graph可以用sum-p…
Author name disambiguation using a graph model with node splitting and merging based on bibliographic information 基于文献信息进行节点拆分和合并的图模型消歧方法(GFAD)   论文: https://link.springer.com/article/10.1007/s11192-014-1289-4   这是一篇比较早的文章,将人名消歧过程作为一个系统,主要想学习它对消歧过程中的…
http://blog.csdn.net/pipisorry/article/details/51461878 概率图模型Graphical Models简介 完全通过代数计算来对更加复杂的模型进行建模和求解.然而,我们会发现,使用概率分布的图形表示进行分析很有好处.这种概率分布的图形表示被称为概率图模型( probabilistic graphical models ).这些模型提供了几个有用的性质:• 它们提供了一种简单的方式将概率模型的结构可视化,可以用于设计新的模型.• 通过观察图形,我…
2008 SCI 影响因子(Impact Factor) Excel download 期刊名缩写 影响因子 ISSN号 CA-CANCER J CLIN 74.575 0007-9235 NEW ENGL J MED 50.017 0028-4793 ANNU REV IMMUNOL 41.059 0732-0582 NAT REV MOL CELL BIO 35.423 1471-0072 PHYSIOL REV 35.000 0031-9333 REV MOD PHYS 33.985 00…
Influence maximization on big social graph Fanju PPT链接: social influence booming of online social network 一, Application:viral marketing 1, identify influence customers: seeds. 2, convince them to adopter product. other application: Rumor monitoring…
网易公开课,第13,14课 notes,9 本质上因子分析是一种降维算法 参考,http://www.douban.com/note/225942377/,浅谈主成分分析和因子分析 把大量的原始变量,浓缩成少数几个因子变量 原始变量,代表浅层的表面现象,所以一定是很多和繁杂的 而因子变量,是代表深层的本质,因,是无法直接观察到的 所以因子分析,就是拨开现象发现本质的过程...很牛逼的感觉 举个例子,观察一个学生,你可以统计到很多原始变量, 代数,几何,语文,英语各科的成绩,每天作业时间,每天笔记…
Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition 2018-01-28  15:45:13  研究背景和动机: 行人动作识别(Human Action Recognition)主要从多个模态的角度来进行研究,即:appearance,depth,optical-flow,以及 body skeletons.这其中,动态的人类骨骼点 通常是最具有信息量的,且能够和其他模态进行互补.…