[Luogu4707]重返现世(min-max容斥) 题面 洛谷 求全集的\(k-max\)的期望 题解 \(min-max\)容斥的证明不难,只需要把所有元素排序之后考虑组合数的贡献,容斥系数先设出来后也不难解出. 那么我们来考虑如何求解\(k-max\),设出容斥系数\(f(|T|)\) \[kmax(S)=\sum_{T\subset S}f(|T|)min(T)\] 显然是从小到大考虑每个元素作为\(min\)时候的贡献,并且我们只需要其中第\(k\)大的贡献. 假设\(n=|S|\),…
题目链接 https://www.luogu.org/problem/P4707 题解 最近被神仙题八连爆了-- 首先Min-Max容斥肯定都能想到,问题是这题要用一个扩展版的--Kth Min-Max容斥 这个东西需要对Min-Max容斥的本质有着比较深刻的理解. 首先我们从另一个角度证明Min-Max容斥的正确性: \(\max(S)=\sum_{T\in S}f(|T|)\min(T)\), 对于第\((x+1)\)大来说它被计算的次数是\(\sum_{k\ge 0} {x\choose…
题目传送门 https://www.luogu.org/problem/P4707 题解 很容易想到这是一个 MinMax 容斥的题目. 设每一个物品被收集的时间为 \(t_i\),那么集齐 \(k\) 个物品所需时间就是 \(\{t_i\}\) 中的第 \(n-k+1\) 大的时间. 所以我们不妨把 \(k\) 看成原来的 \(n-k+1\),这个 \(k \leq 11\). 然后根据扩展 MinMax 容斥 \[ \max_k (S) = \sum_{T \subseteq S, |T|…
传送门 kthMinMax的唯一模板? 首先你需要知道kth Min-Max定理的内容:\(kthmax(S) = \sum\limits_{T \subseteq S} (-1)^{|T| - k} \binom{|T| - 1}{k - 1}min(T)\),证明与二项式反演相关,而且比较有趣的一件事情是这个定理也可以推广到期望上. 因为\(|n-k| \leq 10\),所以我们把求第\(k\)小改为第\(k\)大,那么就有\(k \leq 11\). 那么我们就只需要支持快速的求出所有满…
$\min - \max$ 容斥 Part 1 对于简单的$\min - \max$容斥有一般形式,表达为:$\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-1}\times \min(T)$ 对于上述式子,可以简单的理解. 对于$S$中的每一项,其中的最大值为第$i$项 由于$|T|$非空,一共有$2^{|S|}-1$个$T$,其中,对于非最大值的任意一项,都包含至少一个比其大的元素 所以这些元素的选择情况构成了$2^{k}$幂,其中$|T|$的奇偶分布…
期望的线性性: \[E(x+y)=E(x)+E(y) \] 证明: \[E(x+y)=\sum_i \sum_j(i+j)*P(i=x,j=y) \] \[=\sum_i\sum_ji*P(i=x,j=y)+\sum_i\sum_jj*P(i=x,j=y) \] \[=\sum_ii*P(i=x)+\sum_jj*P(j=y) \] \[=E(x)+E(y) \] Min - Max 容斥: 我们现在有一个全集 \(U= \lbrace{a_1,a_2,a_3,...,a_n}\rbrace\)…
在跨年的晚上玩手机被妈妈骂了赶来写题……呜呜呜……但是A题了还是很开心啦,起码没有把去年的题目留到明年去做ヾ(◍°∇°◍)ノ゙也祝大家2019快乐! 这题显然的 kth min-max 容斥就不说了,不会的还是百度吧……记录一下后面的 dp.感觉挺强强的,%题解…… 首先,min - max 容斥的公式为 : \(max_{K}(S) = \sum_{T\subseteq S}(-1)^{|T|-K}\binom{|T|-1}{K-1}min(T)\) 但是最后面的 \(min(T)\) 显然不…
//待更qwq 反演原理 二项式反演 若 \[g_i=\sum_{j=1}^i {\binom ij} f_j\] , 则有 \[ f_i=\sum_{j=1}^i (-1)^{i-j} {i \choose j} g_j \] 同时, 若 \[g_i=\sum_{j=1}^i (-1)^j {i \choose j} f_j\] , 则有 \[f_i=\sum_{j=1}^i (-1)^j {i \choose j} g_j\] 通过反演原理和组合数的性质不难证明. 0/1? todo Sti…
概念 Min-Max容斥,又称最值反演,是一种对于特定集合,在已知最小值或最大值中的一者情况下,求另一者的算法. 例如: $$max(a,b)=a+b-min(a,b) \\\ max(a,b,c)=a+b+c-min(a,b)-min(a,c)-min(b,c)+min(a,b,c)$$ 显然,将所有数取相反数,易知用最大值求最小值的公式与用最小值求最大值的公式形式相同.以下只讨论用最小值求最大值的方法. 形式 记 $Max(S)$ 表示集合 $S$ 的最大值,$Min(S)$ 表示集合 $S…
这个东西是一个非常好玩的数学工具. $$max(S)=\sum_{T\subset S}(-1)^{|T|-1}min(T)$$ $$max_k(S)=\sum_{T\subset S}(-1)^{|T|-k}C_{|T|-1}^{k-1}min(T)$$ 其中$max(S),min(S),max_k(S)$分别表示集合$S$中的最大值,最小值,第$k$大值 现在我们考虑如何证明,显然我们只用证明第二个式子. 设$$max_k(S)=\sum_{T\subset S}f(|T|)\min(T)$…