Johnson算法】的更多相关文章

Johnson算法 请不要轻易点击标题 一个可以在有负边的图上使用的多源最短路算法 时间复杂度\(O(n \cdot m \cdot log \ m+n \cdot m)\) 空间复杂度\(O(n+m)\) 这个神奇的算法综合利用了Dijkstra算法和Bellman-Ford算法(不要慌,虽然有负边但Dijkstra可以跑!) 在开始讲解之前,我们将其与floyd进行比较 \(floyd:\) ​ 时间复杂度\(O(n^3)\) ​ 空间复杂度\(O(n^2)\) ​ 可以看出,\(floyd…
\(Johnson\)算法学习笔记. 在最短路的学习中,我们曾学习了三种最短路的算法,\(Bellman-Ford\)算法及其队列优化\(SPFA\)算法,\(Dijkstra\)算法.这些算法可以快速的求出单源最短路,即一个源点的最短路. 而\(Floyd\)算法,这个及其简短的算法,可以以\(O(n^3)\)的复杂度算出任意一对点之间的最短路. 我们发现,\(floyd\)算法的时间复杂度和边的数量没有多大的关系,也就是说,\(floyd\)使用的最优条件是稠密图. 那么问题来了,如果我们面…
目录 前言 引入 算法概述 算法流程 正确性证明 代码实现 结语 前言 Johnson 和 Floyd 一样是用来解决无负环图上的全源最短路. 在稀疏图上的表现远远超过 Floyd,时间复杂度 \(O(nm\log m)\). 算法本身一点都不复杂(前提是你已经掌握了多种最短路算法),而且正确性很容易证明. 注意:全文多处引自SF dalao 的文章. 再次注意:模板题贴在这里,请熟读题面再看代码. 引入 想想求一个有 \(\leq 3000\) 个点和 \(\leq 6000\) 条边的有负权…
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ],a[],b[],sum,ti[]; struct node//三元组结构 { int o;//工作编号 int t;//时间 int ab;//在哪个机器 }job[]; int cmp(const node &x,const node &y) { r…
用于求稀疏图上的全局最短路. 考虑将带负权的图变为不带负权的图,再跑\(n\)次Dijkstra. 方法:新建点S,向所有点连边权为\(0\)的边,然后以S为起点跑SPFA.然后将每条边的权值重新赋为\(dist[u\Rightarrow v]+dj[u]-dj[v]\)即可.…
解决单源最短路径问题(Single Source Shortest Paths Problem)的算法包括: Dijkstra 单源最短路径算法:时间复杂度为 O(E + VlogV),要求权值非负: Bellman-Ford 单源最短路径算法:时间复杂度为 O(VE),适用于带负权值情况: 对于全源最短路径问题(All-Pairs Shortest Paths Problem),可以认为是单源最短路径问题的推广,即分别以每个顶点作为源顶点并求其至其它顶点的最短距离.例如,对每个顶点应用 Bel…
根据DSqiu的blog整理出来 :http://dsqiu.iteye.com/blog/1689163 PS:模板是自己写的,如有错误欢迎指出~ 本文内容框架: §1 Dijkstra算法 §2 Bellman-Ford算法 §3 Floyd-Warshall算法 §4 Johnson算算法 §5 问题归约 §0 小结 常用的最短路径算法有:Dijkstra算法.Bellman-Ford算法.Floyd-Warshall算法.Johnson算法 最短路径算法可以分为单源点最短路径和全源最短路…
Johnson 全源最短路径算法学习笔记 如果你希望得到带互动的极简文字体验,请点这里 我们来学习johnson Johnson 算法是一种在边加权有向图中找到所有顶点对之间最短路径的方法.它允许一些边权重为负数,但可能不存在负权重循环.它的工作原理是使用Bellman-Ford 算法来计算输入图的转换,该转换去除了所有负权重,从而允许在转换后的图上使用Dijkstra 算法.Johnson 算法是一种在边加权有向图中找到所有顶点对之间最短路径的方法.它允许一些边权重为负数,但可能不存在负权重循…
流网络(Flow Networks)指的是一个有向图 G = (V, E),其中每条边 (u, v) ∈ E 均有一非负容量 c(u, v) ≥ 0.如果 (u, v) ∉ E 则可以规定 c(u, v) = 0.流网络中有两个特殊的顶点:源点 s (source)和汇点 t(sink).为方便起见,假定每个顶点均处于从源点到汇点的某条路径上,就是说,对每个顶点 v ∈ E,存在一条路径 s --> v --> t.因此,图 G 为连通图,且 |E| ≥ |V| - 1. 下图展示了一个流网络…
Floyd-Warshall 算法采用动态规划方案来解决在一个有向图 G = (V, E) 上每对顶点间的最短路径问题,即全源最短路径问题(All-Pairs Shortest Paths Problem),其中图 G 允许存在权值为负的边,但不存在权值为负的回路.Floyd-Warshall 算法的运行时间为 Θ(V3). Floyd-Warshall 算法由 Robert Floyd 于 1962 年提出,但其实质上与 Bernad Roy 于 1959 年和 Stephen Warshal…