OpenNLP:驾驭文本,分词那些事】的更多相关文章

OpenNLP:驾驭文本,分词那些事 作者 白宁超 2016年3月27日19:55:03 摘要:字符串.字符数组以及其他文本表示的处理库构成大部分文本处理程序的基础.大部分语言都包括基本的处理库,这也是对文本处理或自然语言处理的前期必要工作.典型代表便是分词.词性标注.句子识别等等.本文所介绍的工具主要针对英文分词,对于英文分词工具很多,笔者经比较Apache OpenNLP效率和使用便捷度较好.另外其针对Java开发提供开源的API.开篇简介OpenNLP的情况,随后介绍6种常用模型,最后针对…
前段时间用这个分词用的好好的,突然间就总是初始化失败了: 网上搜了很多,但是不是我想要的答案,最终去了官网看了下:官网链接 发现哇,版本更新了啊,下载页面链接 麻利的下载好了最新的文档,一看压缩包名字:20161115173728_ICTCLAS2016分词系统下载包 现在是2016-11-17 11:49:08估计是刚更新的, 果然,将原来的Data文件夹删除之后,再将最新的Data文件夹放到原来的目录下就Ok了, 貌似初始化失败还有权限的问题什么的,,,遇上再总结,,, 初始化的时候还可能遇…
实现文本分词+在线词云实现工具 词云是NLP中比较简单而且效果较好的一种表达方式,说到可视化,R语言当仍不让,可见R语言︱文本挖掘——词云wordcloud2包 当然用代码写词云还是比较费劲的,网上也有一些成型的软件供大家使用. 本节转载于金砖咖啡馆公众号 我们词云制作工具是目前非常流行的tagxedo,tagxedo对于英文的分词做的很好(废话,英文单词之间有空格),但是对于中文分词做的不好,于是我们需要用到另外一个在线工具http://life.chacuo.net/convertexpor…
最近研究seo和python如何结合,参考网上的一些资料,写的这个程序. 目的:分析某个行业(例如:圆柱模板)用户最关心的一些词,根据需求去自动调整TDK,以及栏目,内容页的规划 使用方法: 1.下载安装cygwin:http://www.cygwin.com/ 2.cygwin安装时别忘记安装curl,wget,iconv,lynx,dos2unix,Python等常用工具,特别是Python,这次主要就是用它了. 3.去下载jieba中文分词组件: 首选:https://github.com…
import jieba from collections import Counter from wordcloud import WordCloud import matplotlib.pyplot as plt from PIL import Image import numpy as np import jieba.analyse from pyquery import PyQuery santi_text = open('./santi.txt', 'r', encoding='utf…
本文大纲 UDF 简介 Hive作为一个sql查询引擎,自带了一些基本的函数,比如count(计数),sum(求和),有时候这些基本函数满足不了我们的需求,这时候就要写hive hdf(user defined funation),又叫用户自定义函数.编写Hive UDF的步骤: 添加相关依赖,创建项目,这里我用的管理工具是maven,所以我创建的也是一个maven 项目(这个时候你需要选择合适的依赖版本,主要是Hadoop 和 Hive,可以使用hadoop version和hive --ve…
Tika常见格式文件抽取内容并做预处理 作者 白宁超 2016年3月30日18:57:08 摘要:本文主要针对自然语言处理(NLP)过程中,重要基础部分抽取文本内容的预处理.首先我们要意识到预处理的重要性.在大数据的背景下,越来越多的非结构化半结构化文本.如何从海量文本中抽取我们需要的有价值的知识显得尤为重要.另外文本格式常常不一,诸如:pdf,word,excl,xml,ppt,txt等常见文件类型你或许经过一番周折还是有办法处理的.倘若遇到database,html,邮件,RTF,图像,语音…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- openNLP是NLP中比较好的开源工具,R语言中有openNLP packages,但是呢,貌似对中文的支持并不好,笔者试了试,发现结果并不如意.但是也算认识了一番,就来介绍一下. 一些内容转载于白宁超老师:OpenNLP:驾驭文本,分词那些事 ---------------------------------------- 一.openNL…
本文由云+社区发表 作者:netkiddy 导语 AI在2018年应该是互联网界最火的名词,没有之一.时间来到了9102年,也是项目相关,涉及到了一些AI写作相关的功能,为客户生成一些素材文章.但是,AI并不一定最懂你,客户对于AI写出来的文章,多少是会做些修改的.为了更好的衡量出AI文章的可用度,在这儿就会需要存有一个反馈的环节,来看看用户润色后的文章与原始AI文章之间的区别是多大,AI写出来的文章可用性是否足够.由于目前还没精力细究AI写作其中的细节,为了更好地计算每次成文与原文的区分,便花…
分词(Tokenization) - NLP学习(1) N-grams模型.停顿词(stopwords)和标准化处理 - NLP学习(2)   之前我们都了解了如何对文本进行处理:(1)如用NLTK文本处理库将文本的句子成分分成了N-Gram模型,与此同时引入了正则表达式去除一些多余的句子成分:(2)将停顿词去除:(3)一些通用的标准化处理,如大小写.提取词干等.在这一节我们将看看如何对文本中的单词进行统计,并以此来查看一个单词在特定文档中或者整个文本集中的重要性.统计单词的任务是为了给特定的词…