Spark 公共篇-InterfaceStability】的更多相关文章

本章内容: 1.源码 InterfaceStability 类包含三个注解,用于说明被他们注解的类型的稳定性. /** * Annotation to inform users of how much to rely on a particular package, * class or method not changing over time. */ public class InterfaceStability { /** * Stable APIs that retain source…
该部分分为两篇,分别介绍RDD与Dataset/DataFrame: 一.RDD 二.DataSet/DataFrame 先来看下官网对RDD.DataSet.DataFrame的解释: 1.RDD Resilient distributed dataset(RDD),which is a fault-tolerant collection of elements that can be operated on in parallel RDD——弹性分布式数据集,分布在集群的各个结点上具有容错性…
该部分分为两篇,分别介绍RDD与Dataset/DataFrame: 一.RDD 二.DataSet/DataFrame 该篇主要介绍DataSet与DataFrame. 一.生成DataFrame 1.1.通过case class构造DataFrame package com.personal.test import org.apache.spark.sql.{Encoder, Encoders, SparkSession} object DataFrameTest { case class…
本章内容: 1.功能描述 本篇文章就要根据源码分析SparkContext所做的一些事情,用过Spark的开发者都知道SparkContext是编写Spark程序用到的第一个类,足以说明SparkContext的重要性:这里先摘抄SparkContext源码注释来简单介绍介绍SparkContext,注释的第一句话就是说SparkContext为Spark的主要入口点,简明扼要,如把Spark集群当作服务端那Spark Driver就是客户端,SparkContext则是客户端的核心:如注释所说…
上一篇已经写过如何搭建注册中心eureka,这一篇主要是搭建一些公共的api接口服务,并把实体类单独拿出来放到一个服务上引用,比较简单的 1.首先.创建一个实体类服务,这样就不用在每个服务里创建实体了,只需要把实体的依赖加入到pom.xml中就可以引用, 可以实现各服务间实体共享,这里的服务命名为study-entity,不需要添加任何配置,结构如下:  2.在pom.xml中加入依赖,在依赖中要依赖父项目,这样一个封装实体的服务就创建好了 <!--父项目依赖--> <parent>…
==是什么 == 目标Scope(解决什么问题) 在大规模的特定数据集上的迭代运算或重复查询检索 官方定义 aMapReduce-like cluster computing framework designed for low-latency iterativejobs and interactive use from an interpreter 个人理解 首先,MapReduce-like是说架构上和多数分布式计算框架类似,Spark有分配任务的主节点(Driver)和执行计算的工作节点(…
摘要: spark的优势:(1)图计算,迭代计算(2)交互式查询计算 spark特点:(1)分布式并行计算框架(2)内存计算,不仅数据加载到内存,中间结果也存储内存 为了满足挖掘分析与交互式实时查询的计算需求,腾讯大数据使用了Spark平台来支持挖掘分析类计算.交互式实时查询计算以及允许误差范围的快速查询计算,目前腾讯大数据拥有超过200台的Spark集群,并独立维护Spark和Shark分支.Spark集群已稳定运行2年,我们积累了大量的案例和运营经验能力,另外多个业务的大数据查询与分析应用,…
AS WE ALL KNOW,学机器学习的一般都是从python+sklearn开始学,适用于数据量不大的场景(这里就别计较“不大”具体指标是啥了,哈哈) 数据量大了,就需要用到其他技术了,如:spark, tensorflow,当然也有其他技术,此处略过一坨字... 先来看看如何让这3个集成起来吧(WINDOWS环境):pycharm(python开发环境), pyspark.cmd(REPL命令行接口), spark(spark驱动.MASTER等) download Anaconda, l…
一.基本介绍 rdd.aggregateByKey(3, seqFunc, combFunc) 其中第一个函数是初始值 3代表每次分完组之后的每个组的初始值. seqFunc代表combine的聚合逻辑 每一个mapTask的结果的聚合成为combine combFunc reduce端大聚合的逻辑 ps:aggregateByKey默认分组 二.代码 from pyspark import SparkConf,SparkContext from __builtin__ import str c…
论文内容: 待整理 参考文献: Spark: Cluster Computing with Working Sets. Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, Ion Stoica. HotCloud 2010. June 2010. Spark :工作组上的集群计算的框架…