这部分讨论在有数据缺失情况下的 learning 问题,这里仍然假定了图结构是已知的. 首先需要讨论的是为什么会缺失,很多情况下缺失并不是“随机”的:有的缺失是人为的,那么某些情况下缺失的可以直接补上,而某些情况下我们需要使用额外的随机变量对缺失进行 modeling:有的缺失是随机的,有的是因为的确存在“解释”或者人为赋予了随机性(如 Bayesian 里面对参数假定了分布),这些时候我们会引入所谓的隐变量.这种情况下,我们 learning 的目标是最大化观测到的的数据的 likelihoo…