《The Tail At Scale》论文详解】的更多相关文章

简介 用户体验与软件的流畅程度是呈正相关的,所以对于软件服务提供方来说,保持服务耗时在用户能接受的范围内就是一件必要的事情.但是在大型分布式系统上保持一个稳定的耗时又是一个很大的挑战,这篇文章解析的是google发布的一篇论文<The Tail At Scale>,里面讲述的是google内部的一些长尾耗时优化相关的经验,以及我个人的一些思考. 服务耗时为什么会产生抖动 在目前大规模的分布式系统中,服务与服务之间的调用关系可以呈现为下图的形式,服务A,B都有多个实例,服务A实例通过服务发现模块…
一.背景 自从Attention机制在提出之后,加入Attention的Seq2Seq模型在各个任务上都有了提升,所以现在的seq2seq模型指的都是结合rnn和attention的模型.传统的基于RNN的Seq2Seq模型难以处理长序列的句子,无法实现并行,并且面临对齐的问题. 所以之后这类模型的发展大多数从三个方面入手: input的方向性:单向 -> 双向 深度:单层 -> 多层 类型:RNN -> LSTM GRU 但是依旧收到一些潜在问题的制约,神经网络需要能够将源语句的所有必…
废话不多说,上车吧,少年 paper链接:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks &创新点 设计Region Proposal Networks[RPN],利用CNN卷积操作后的特征图生成region proposals,代替了Selective Search.EdgeBoxes等方法,速度上提升明显: 训练Region Proposal Networks与检测网络[Fast R…
废话不多说,上车吧,少年 paper链接:Fast R-CNN &创新点 规避R-CNN中冗余的特征提取操作,只对整张图像全区域进行一次特征提取: 用RoI pooling层取代最后一层max pooling层,同时引入建议框信息,提取相应建议框特征: Fast R-CNN网络末尾采用并行的不同的全连接层,可同时输出分类结果和窗口回归结果,实现了end-to-end的多任务训练[建议框提取除外],也不需要额外的特征存储空间[R-CNN中这部分特征是供SVM和Bounding-box regres…
这几天在看<Rich feature hierarchies for accurate object detection and semantic segmentation >,觉得作者的科研素养非常棒,考虑问题很全面而且很有逻辑性: 不过暂时有的地方看的也不是太懂,这里转载了一篇博客中的介绍,博主写的不错: 博客链接:http://blog.csdn.net/wopawn/article/details/52133338 paper链接:链接: https://pan.baidu.com/s…
“Google文件存储系统(GFS)是构建在廉价服务器之上的大型分布式系统.它将服务器故障视为正常现象,通过软件方式自动容错,在保证系统可用性和可靠性同时,大大降低系统成本. GFS是Google整个分布式系统的基石,其他存储系统如Google BigTable.GoogleMegastore等系统均直接或间接构建在GFS之上.另外,Google的大规模批处理系统MapReduce也是利用GFS系统作为海量数据的输入输出.” 以下内容为在研读Google_File_System论文时,对其中一些…
废话不多说,上车吧,少年 paper链接:Rich feature hierarchies for accurate object detection and semantic segmentation &创新点 采用CNN网络提取图像特征,从经验驱动的人造特征范式HOG.SIFT到数据驱动的表示学习范式,提高特征对样本的表示能力: 采用大样本下有监督预训练+小样本微调的方式解决小样本难以训练甚至过拟合等问题. &问题是什么 近10年以来,以人工经验特征为主导的物体检测任务mAP[物体类别…
原文网址:http://www.111cn.net/sys/linux/46902.htm linux tail命令用途是按照要求将指定的文件的最后部分输出到标准设备,一般是终端,通俗讲来,就是把某个档案文件的最后几行显示到终端上,如果该档案有更新,tail会自动刷新,确保你看到最新的档案内容. 一.tail命令语法tail [ -f ] [ -c Number | -n Number | -m Number | -b Number | -k Number ] [ File ] 参数说明: ■-…
文章转自同一作者的微信公众号:[机器学习炼丹术] 论文名称:"Deformable Convolutional Networks" 论文链接:https://arxiv.org/abs/1703.06211 0 前言 首先理解: deformable Convolution可变卷积针对的对象是卷积本身,因此膨胀卷积,3D卷积都可以用可变卷积的形式 本篇文章讲解理论和论文,我还没有用上这个可变卷积测试效果,因为PyTorch好像还没有封装这个卷积方式,有点麻烦.所以我计划下一篇文章结合g…
本文是 Google 团队在 MobileNet 基础上提出的 MobileNetV2,其同样是一个轻量化卷积神经网络.目标主要是在提升现有算法的精度的同时也提升速度,以便加速深度网络在移动端的应用.…