Spark Streaming之三:DStream解析】的更多相关文章

Spark Streaming揭秘 Day34 解析UI监听模式 今天分享下SparkStreaming中的UI部分,和所有的UI系统一样,SparkStreaming中的UI系统使用的是监听器模式.监听器模式是指,首先注册事件源,当事件或者数据发生改变时,监听器就会接收到这个改变,并对这种改变做出响应,监听器模式可以简单的理解为一种MVC的模式. SparkStreaming中的UI系统有两个非常的支持,就是处理时间process time和Batch等待时间Scheduler Delay.一…
DStream 1.1基本说明 1.1.1 Duration Spark Streaming的时间类型,单位是毫秒: 生成方式如下: 1)new Duration(milli seconds) 输入毫秒数值来生成: 2)seconds(seconds) 输入秒数值来生成: 3)Minutes(minutes) 输入分钟数值来生成: 1.1.2 slideDuration /** Time interval after which the DStream generates a RDD */ de…
1.首先将GEOIP放到服务器上,如,/opt/db/geo/GeoLite2-City.mmdb 2.新建scala sbt工程,测试是否可以顺利解析 import java.io.Fileimport java.net.InetAddressimport com.maxmind.db.CHMCacheimport com.maxmind.geoip2.DatabaseReaderimport org.json4s.DefaultFormats /** * Created by zxh on…
一.基于Receiver的方式 1.概述 基于Receiver的方式: Receiver是使用Kafka的高层次Consumer API来实现的.receiver从Kafka中获取的数据都是存储在Spark Executor的内存中的, 然后Spark Streaming启动的job会去处理那些数据. 然而,在默认的配置下,这种方式可能会因为底层的失败而丢失数据.如果要启用高可靠机制,让数据零丢失,就必须启用Spark Streaming的 预写日志机制(Write Ahead Log,WAL)…
DStream是类似于RDD概念,是对数据的抽象封装.它是一序列的RDD,事实上,它大部分的操作都是对RDD支持的操作的封装,不同的是,每次DStream都要遍历它内部所有的RDD执行这些操作.它可以由StreamingContext通过流数据产生或者其他DStream使用map方法产生(与RDD一样) time属性对DStream而言非常重要,DStream里面的RDD就是通过某个时间间隔产生的,而且以产生的时间为索引.所以在访问DStream的某个RDD时,实际上是访问它在某个时间点的RDD…
前面一篇讲到了,DAG静态模板的生成.那么spark streaming会在每一个batch时间一到,就会根据DAG所形成的逻辑以及物理依赖链(dependencies)动态生成RDD以及由这些RDD组成的job,并形成一个job集合提交到集群当中执行.那么下面我们具体分析这三个步骤. 首先从JobScheduler讲起.在本节所需要了解的是JobScheduler的两个重要对象.jobExecutor与JobHandler.jobExecutor是一个名为streaming-job-execu…
本课分2部分讲解: 第一部分,讲解Kafka的概念.架构和用例场景: 第二部分,讲解Kafka的安装和实战. 由于时间关系,今天的课程只讲到如何用官网的例子验证Kafka的安装是否成功.后续课程会接着讲解如何集成Spark Streaming和Kafka. 一.Kafka的概念.架构和用例场景 http://kafka.apache.org/documentation.html#introdution 1.Kafka的概念 Apache Kafka是分布式发布-订阅消息系统.它最初由Linked…
本系列主要描述Spark Streaming的运行流程,然后对每个流程的源码分别进行解析 之前总听同事说Spark源码有多么棒,咱也不知道,就是疯狂点头.今天也来撸一下Spark源码. 对Spark的使用也就是Spark Streaming使用的多一点,所以就拿Spark Streaming开涮. 源码中的一些类 这里先列举一些源码中的类,大家先预热一下. StreamingContext:这是Spark Streaming程序的入口,提供了运行时上下文环境 DStream:是RDD在Spark…
https://mp.weixin.qq.com/s/KPTM02-ICt72_7ZdRZIHBA 苏宁基于Spark Streaming的实时日志分析系统实践 原创: AI+落地实践 AI前线 2018-03-07 前言 目前业界基于 Hadoop 技术栈的底层计算平台越发稳定成熟,计算能力不再成为主要瓶颈. 多样化的数据.复杂的业务分析需求.系统稳定性.数据可靠性, 这些软性要求, 逐渐成为日志分析系统面对的主要问题.2018 年线上线下融合已成大势,苏宁易购提出并践行双线融合模式,提出了智…
https://mp.weixin.qq.com/s/bGXhC9hvDj4lzK7wYYHGDg 目前,我们使用Filebeat监控日志产生的目录,收集产生的日志,打到logstash集群,接入kafka的topic,再由Spark Streaming 进行实时解析,将解析的结果打入Redis缓存,供后续统计查询使用.…