接下来我们就对除了正态分布以外的常用参数分布族进行参数估计,具体对连续型分布有指数分布.均匀分布,对离散型分布有二项分布.泊松分布几何分布. 今天的主要内容是均匀分布的参数估计,内容比较简单,读者应尝试一边阅读,一边独立推导出本文的结论.由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! 目录 Part 1:均匀分布的参数估计 Part 2:次序统计量 Part 3:均匀分布次序统计量与$\beta$分布 Part 1:均匀分布的参数估计 一般说来,离散分布似乎比连续…
本渣想回过头来整理一下MATLAB的一些基本的知识(很多东西比较琐碎,应该系统的梳理梳理),下文中没有提到的,自己用help查即可. 此文用来存个档,便于回顾. 由于matlab各版本部分语法存在差异,可能会出现bug,用help查帮助文档即可. 如果没有装Matlab,我这里有一篇建模软件的博客:https://www.cnblogs.com/fangxiaoqi/p/10563509.html 变量名:字母数字串(第一个字符必须英文字母 | 字符间无空格 | 最多19个字符): 用%注解:…
http://cos.name/2013/01/lda-math-beta-dirichlet/#more-6953 2. 认识Beta/Dirichlet分布2.1 魔鬼的游戏—认识Beta 分布 统计学就是猜测上帝的游戏,当然我们不总是有机会猜测上帝,运气不好的时候就得揣度魔鬼的心思.有一天你被魔鬼撒旦抓走了,撒旦说:“你们人类很聪明,而我是很仁慈的,和你玩一个游戏,赢了就可以走,否则把灵魂出卖给我.游戏的规则很简单,我有一个魔盒,上面有一个按钮,你每按一下按钮,就均匀的输出一个[0,1]之…
主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:11:56 开始吧,先不要发言了,先讲PRML第二章Probability Distributions.今天的内容比较多,还是边思考边打字,会比较慢,大家不要着急,上午讲不完下午会接着讲. 顾名思义,PRML第二章Probability Distributions的主要内容有:伯努利分布. 二项式 –beta共轭分布.多项式分布 -狄利克雷共轭分布 .高斯分布 .频率派和贝叶斯派…
Topic Model 标签(空格分隔): 机器学习 \(\Gamma\)函数 \(\Gamma\)函数可以看做是阶乘在实数域上的推广,即: \(\Gamma(x) = \int_{0}^{+\infty} t^{x-1}e^{-t}dt = (x-1)!\) 性质:\(\frac{\Gamma(x)}{\Gamma(x-1)} = x-1\) Beta分布 Beta分布的概率密度:\[f(x) = \begin{cases} \frac{1}{B(\alpha, \beta)}x^{\alph…
如果想理解汤普森采样算法,就必须先熟悉了解贝塔分布. 一.Beta(贝塔)分布 Beta分布是一个定义在[0,1]区间上的连续概率分布族,它有两个正值参数,称为形状参数,一般用α和β表示,Beta分布的概率密度函数形式如下: 这里的Γ表示gamma函数. Beta分布的均值是: 方差: Beta分布的图形(概率密度函数): 从Beta分布的概率密度函数的图形我们可以看出,Beta分布有很多种形状,但都是在0-1区间内,因此Beta分布可以描述各种0-1区间内的形状(事件).因此,它特别适合为某件…
今天的主角是指数分布,由此导出\(\Gamma\)分布,同样,读者应尝试一边阅读,一边独立推导出本文的结论.由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! 目录 Part 1:指数分布的参数估计 Part 2:独立同分布指数分布之和与$\Gamma$分布 Part 3:$\Gamma$分布与其他分布 Part 1:指数分布的参数估计 指数分布是单参数分布族,总体\(X\sim E(\lambda)\)有时也记作\(\mathrm{Exp}(\lambda)\),此…
昨天我们给出了统计量是UMVUE的一个必要条件:它是充分统计量的函数,且是无偏估计,但这并非充分条件.如果说一个统计量的无偏估计函数一定是UMVUE,那么它还应当具有完备性的条件,这就是我们今天将探讨的内容.由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! Part 1:完备统计量 完备统计量跟充分统计量从名字上看是相对应的,但是完备统计量的意义不像充分统计量那么明确--充分统计量代表能"完全包含"待估参数信息的统计量,而完备统计量则是使得不同的参数值对应…
在上一篇文章的最后,我们指出,参数估计是不可能穷尽讨论的,要想对各种各样的参数作出估计,就需要一定的参数估计方法.今天我们将讨论常用的点估计方法:矩估计.极大似然估计,它们各有优劣,但都很重要.由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! Part 1:矩法估计 矩法估计的重点就在于"矩"字,我们知道矩是概率分布的一种数字特征,可以分为原点矩和中心矩两种.对于随机变量\(X\)而言,其\(k\)阶原点矩和\(k\)阶中心矩为 \[a_k=\mathbb…
1.离散随机分布 超几何分布:M:产品总数;K:次品数;N:抽样数. hygepdf(X, M,K,N):计算超几何分布的密度. 例:hygepdf(1,10,1,3),执行结果为ans=0.3000 表示参数为10,.1和3的超几何分布在数值1处的密度为0.3. 例:hygepdf([1,0],10,1,3),执行结果为ans=0.3000 0.7000 第一个分量是超几何分布在数值1处的密度,第二个分量是该分布在数值0处的密度. hygecdf(Y,M,K,N):计算超几何分布的累积分布函数…