目录 对比度 在控制台查看 插件或网站 感知对比度算法(APCA) APCA Math 原理 js 实现的 SAPC 最后 灵感的源泉来源于不断的接受新鲜事物. Chrome 89 新功能一览,性能提升明显,大量 DevTools 新特性! 文章中的新特性,掌握了对日常开发,很受益,赶紧更新浏览器版本吧. 谈谈其中提到的:新的颜色对比度算法-先进感知对比度算法(APCA). 启用该功能设置:选中 Settings > Experiments 下的 Enable new Advanced Perc…
(一)局部加权回归 通常情况下的线性拟合不能很好地预测所有的值,因为它容易导致欠拟合(under fitting).如下图的左图.而多项式拟合能拟合所有数据,但是在预测新样本的时候又会变得很糟糕,因为它导致数据的 过拟合(overfitting),不符合数据真实的模型.如下图的右图. 下面来讲一种非参数学习方法——局部加权回归(LWR).为什么局部加权回归叫做非参数学习方法呢?首先,参数学习方法是这样一种方法:在训练完成所有数据后得到一系列训练参数,然后根据训练参数来预测新样本的值,这时不再依赖…
课程大纲 欠拟合的概念(非正式):数据中某些非常明显的模式没有成功的被拟合出来.如图所示,更适合这组数据的应该是而不是一条直线. 过拟合的概念(非正式):算法拟合出的结果仅仅反映了所给的特定数据的特质. 非参数学习方法 线性回归是参数学习方法,有固定数目的参数以用来进行数据拟合的学习型算法算法称为参数学习方法.对于非参数学习方法来讲,其参数的数量随着训练样本的数目m线性增长:换句话来说,就是算法所需要的东西会随着训练集合线性增长.局部加权回归算法是非参数学习方法的一个典型代表. 局部加权回归算法…
主要内容: SWOMP的算法流程 SWOMP的MATLAB实现 一维信号的实验与结果 门限参数a.测量数M与重构成功概率关系的实验与结果 SWOMP与StOMP性能比较 一.SWOMP的算法流程 分段弱正交匹配追踪(Stagewise Weak OMP)可以说是StOMP的一种修改算法,它们的唯一不同是选择原子时的门限设置,这可以降低对测量矩阵的要求.我们称这里的原子选择方式为"弱选择"(Weak Selection),StOMP的门限设置由残差决定,这对测量矩阵(原子选择)提出了要求…
主要内容: StOMP的算法流程 StOMP的MATLAB实现 一维信号的实验与结果 门限参数Ts.测量数M与重构成功概率关系的实验与结果 一.StOMP的算法流程 分段正交匹配追踪(Stagewise OMP)也是由OMP改进而来的一种贪心算法,与CoSaMP.SP算法类似,不同之处在于CoSaMP.SP算法在迭代过程中选择的是与信号内积最大的2K或K个原子,而StOMP是通过门限阈值来确定原子.此算法的输入参数中没有信号稀疏度K,因此相比于ROMP及CoSaMP有独到的优势(这句话存在疑问)…
分段正交匹配追踪(StagewiseOMP)或者翻译为逐步正交匹配追踪,它是OMP另一种改进算法,每次迭代可以选择多个原子.此算法的输入参数中没有信号稀疏度K,因此相比于ROMP及CoSaMP有独到的优势. 1.StOMP重构算法流程: 分段正交匹配追踪(StagewiseOMP)或者翻译为逐步正交匹配追踪,它是OMP另一种改进算法,每次迭代可以选择多个原子.此算法的输入参数中没有信号稀疏度K,因此相比于ROMP及CoSaMP有独到的优势. 1.StOMP重构算法流程: 2.分段正交匹配追踪(S…
压缩感知重构算法之OMP算法python实现 压缩感知重构算法之CoSaMP算法python实现 压缩感知重构算法之SP算法python实现 压缩感知重构算法之IHT算法python实现 压缩感知重构算法之OLS算法python实现 压缩感知重构算法之IRLS算法python实现 本文主要简单介绍了利用python代码实现压缩感知的过程. 压缩感知简介 [具体可以参考这篇文章] 假设一维信号x长度为N,稀疏度为K.Φ 为大小M×N矩阵(M<<N).y=Φ×x为长度M的一维测量值.压缩感知问题就…
主要内容: FPC的算法流程 FPC的MATLAB实现 一维信号的实验与结果 基于凸优化的重构算法 基于凸优化的压缩感知重构算法. 约束的凸优化问题: 去约束的凸优化问题: 在压缩感知中,J函数和H函数的选择: 一.FPC的算法 FPC,全称Fixed-Point Continuation,这里翻译为定点连续. 数学模型: 算法: 该算法在迭代过程中利用了收缩公式shrinkage(也称为软阈值soft thresholding),算法简单.优美. 迭代过程: (梯度) 合并一下,就得到了整个迭…
主要内容: l1_ls的算法流程 l1_ls的MATLAB实现 一维信号的实验与结果 前言 前面所介绍的算法都是在匹配追踪算法MP基础上延伸的贪心算法,从本节开始,介绍基于凸优化的压缩感知重构算法. 约束的凸优化问题: 去约束的凸优化问题: 在压缩感知中,J函数和H函数的选择: 那么,后面要解决的问题就是如何通过最优化方法来求出x. 一.l1_ls的算法 l1_ls,全称ℓ1-regularized least squares,基于L1正则的最小二乘算法,在标准内点法的基础上,在truncate…
主要内容: gOMP的算法流程 gOMP的MATLAB实现 一维信号的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.gOMP的算法流程 广义正交匹配追踪(Generalized OMP, gOMP)算法可以看作为OMP算法的一种推广.OMP每次只选择与残差相关最大的一个,而gOMP则是简单地选择最大的S个.之所以这里表述为"简单地选择"是相比于ROMP之类算法的,不进行任何其它处理,只是选择最大的S个而已. gOMP的算法流程: 二.gOMP的MATLAB实现(CS_gOMP…