KNN算法基本原理与sklearn实现】的更多相关文章

''' KNN 近邻算法,有监督学习算法 用于分类和回归 思路: 1.在样本空间中查找 k 个最相似或者距离最近的样本 2.根据这 k 个最相似的样本对未知样本进行分类 步骤: 1.对数据进行预处理 提取特征向量,对原来的数据重新表达 2.确定距离计算公式 计算已知样本空间中所有样本与未知样本的距离 3.对所有的距离按升序进行排列 4.选取与未知样本距离最小的 k 个样本 5.统计选取的 k 个样本中每个样本所属类别的出现概率 6.把出现频率最高的类别作为预测结果,未知样本则属于这个类别 程序要…
kNN是一种常见的监督学习方法.工作机制简单:给定测试样本,基于某种距离度量找出训练集中与其最靠近的k各训练样本,然后基于这k个“邻居”的信息来进行预测,通常,在分类任务中可使用“投票法”,即选择这k个样本中出现最多的类别标记作为预测结果:在回归任务中可以使用“平均法”,即将这k个样本的实值输出标记的平均值作为预测结果:还可以基于距离远近进行加权平均或加权投票,距离越近的样本权重越大.[1] kNN的伪代码如下:[2] 对未知类别属性的数据集中的每个点依次执行以下操作: (1)计算已知类别数据集…
姊妹篇: 深入浅出KNN算法(一) 原理介绍 上次介绍了KNN的基本原理,以及KNN的几个窍门,这次就来用sklearn实践一下KNN算法. 一.Skelarn KNN参数概述 要使用sklearnKNN算法进行分类,我们需要先了解sklearnKNN算法的一些基本参数,那么这节就先介绍这些内容吧. def KNeighborsClassifier(n_neighbors = 5, weights='uniform', algorithm = '', leaf_size = '30', p =…
最近邻分类 概念讲解 我们使用的是scikit-learn 库中的neighbors.KNeighborsClassifier 来实行KNN. from sklearn import neighbors neighbors.KNeighborsClassifier(n_neighbors=5, weights='uniform', algorithm='auto', leaf_size=30,p=2, metric='minkowski', metric_params=None, n_jobs=…
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.谁和我隔得近,我就跟谁是一类,有点中国古语说的近墨者黑近朱者赤意思.KNN算法中,所选择的邻居都是已经正确分类的对象.该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. KNN方法虽然从原理上也依赖于极限定理,但在类…
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结合视频学习和书籍基础的笔记所得.本系列文章将采用理论结合实践方式编写.首先介绍机器学习和深度学习的范畴,然后介绍关于训练集.测试集等介绍.接着分别介绍机器学习常用算法,分别是监督学习之分类(决策树.临近取样.支持向量机.神经网络算法)监督学习之回归(线性回归.非线性回归)非监督学习(K-means聚…
1.算法讲解 KNN算法是一个最基本.最简单的有监督算法,基本思路就是给定一个样本,先通过距离计算,得到这个样本最近的topK个样本,然后根据这topK个样本的标签,投票决定给定样本的标签: 训练过程:只需要加载训练数据: 测试过程:通过之前加载的训练数据,计算测试数据集中各个样本的标签,从而完成测试数据集的标注: 2.代码 具体代码如下: #!/usr/bin/env/ python # -*- coding: utf-8 -*- import csv import random from m…
这里是写给小白看的,大牛路过勿喷. 1 KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类对应的关系.输入没有标签的数据后,将新数据中的每个特征与样本集中数据对应的特征进行比较,提取出样本集中特征最相似数据(最近邻)的分类标签.一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k近邻算法中k的出处,通常k是不大于20的整数.最后选择k个最相似数据中出现次数最多…
一.KNN算法概述 KNN可以说是最简单的分类算法之一,同时,它也是最常用的分类算法之一,注意KNN算法是有监督学习中的分类算法,它看起来和另一个机器学习算法Kmeans有点像(Kmeans是无监督学习算法),但却是有本质区别的.那么什么是KNN算法呢,接下来我们就来介绍介绍吧. 二.KNN算法介绍 KNN的全称是K Nearest Neighbors,意思是K个最近的邻居,从这个名字我们就能看出一些KNN算法的蛛丝马迹了.K个最近邻居,毫无疑问,K的取值肯定是至关重要的.那么最近的邻居又是怎么…
邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.判断邻居就是用向量距离大小来刻画.          kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别. kNN方法在类…