首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
pandas | 使用pandas进行数据处理——DataFrame篇
】的更多相关文章
pandas | 使用pandas进行数据处理——DataFrame篇
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是pandas数据处理专题的第二篇文章,我们一起来聊聊pandas当中最重要的数据结构--DataFrame. 上一篇文章当中我们介绍了Series的用法,也提到了Series相当于一个一维的数组,只是pandas为我们封装了许多方便好用的api.而DataFrame可以简单了理解成Series构成的dict,这样就将数据拼接成了二维的表格.并且为我们提供了许多表级别数据处理以及批量数据处理的接口,大大降低了数据处理的难度. 创建D…
pandas | 使用pandas进行数据处理——Series篇
本文始发于个人公众号:TechFlow,原创不易,求个关注 上周我们关于Python中科学计算库Numpy的介绍就结束了,今天我们开始介绍一个新的常用的计算工具库,它就是大名鼎鼎的Pandas. Pandas的全称是Python Data Analysis Library,是一种基于Numpy的科学计算工具.它最大的特点就是可以像是操作数据库当中的表一样操作结构化的数据,所以它支持许多复杂和高级的操作,可以认为是Numpy的加强版.它可以很方便地从一个csv或者是excel表格当中构建出完整的数…
吴裕雄--天生自然python学习笔记:pandas模块强大的数据处理套件
用 Python 进行数据分析处理,其中最炫酷的就属 Pa ndas 套件了 . 比如,如果我 们通过 Requests 及 Beautifulsoup 来抓取网页中的表格数据 , 需要进行较复 杂的搜寻才能抓取 , 但通过 Pandas 不但可以自动读取网页中的表格数据,还能对数 据进行修改.排序等处理,以及给制统计图表 . Pandas 主要的数据类型有两种: Series 是一维数据结构, 其用法与列表类 似: DataFrame 是 二维数据结 构, 表格 即为 DataFrame 的典…
pandas模块(数据分析)------dataframe
DataFrame DataFrame是一个表格型的数据结构,含有一组有序的列,是一个二维结构. DataFrame可以被看做是由Series组成的字典,并且共用一个索引. 一.生成方式 import numpy as np import pandas as pd a=pd.DataFrame({'one':pd.Series([1,2,3],index=['a','b','c']), 'two':pd.Series([1,2,3,4],index=['b','a','c','d'])}) a…
pandas基础(3)_数据处理
1:删除重复数据 使用duplicate()函数检测重复的行,返回元素为bool类型的Series对象,每个元素对应一行,如果该行不是第一次出现,则元素为true >>> df =DataFrame(np.random.randint(0,150,size=(6,3)),columns=['Chinese','maths','Chinese'],index=['zhangsan','lisi','wangwu','lisi','xiaowu','zhangsan']) >>&…
pandas 获取不符合条件的dataframe
pandas 获取不符合条件的dataframe 或将其过滤掉: df[df["col"].str.contains('this'|'that')==False] >>> df = pd.DataFrame({"A": ["Hello", "this", "World", "apple"]}) >>> df[df['A'].str.contains(&…
Pandas之:Pandas高级教程以铁达尼号真实数据为例
Pandas之:Pandas高级教程以铁达尼号真实数据为例 目录 简介 读写文件 DF的选择 选择列数据 选择行数据 同时选择行和列 使用plots作图 使用现有的列创建新的列 进行统计 DF重组 简介 今天我们会讲解一下Pandas的高级教程,包括读写文件.选取子集和图形表示等. 读写文件 数据处理的一个关键步骤就是读取文件进行分析,然后将分析处理结果再次写入文件. Pandas支持多种文件格式的读取和写入: In [108]: pd.read_ read_clipboard() read_e…
pandas数组(pandas Series)-(4)NaN的处理
上一篇pandas数组(pandas Series)-(3)向量化运算里说到,将两个 pandas Series 进行向量化运算的时候,如果某个 key 索引只在其中一个 Series 里出现,计算的结果会是 NaN ,那么有什么办法能处理 NaN 呢? 1. dropna() 方法: 此方法会把所有为 NaN 结果的值都丢弃,相当于只计算共有的 key 索引对应的值: import pandas as pd s1 = pd.Series([1, 2, 3, 4], index=['a', '…
[Pandas]利用Pandas处理excel数据
Python 处理excel的第三包有很多,比如XlsxWriter.xlrd&xlwt.OpenPyXL.Microsoft Excel API等,最后综合考虑选用了Pandas. Pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具.pandas提供了大量能使我们快速便捷地处理数据的函数和方法.你很快就会发现,它是使Python成为强大而高效的数据分析环境的重要因素之一.pand…
Pandas之:Pandas简洁教程
Pandas之:Pandas简洁教程 目录 简介 对象创建 查看数据 选择数据 loc和iloc 布尔索引 处理缺失数据 合并 分组 简介 pandas是建立在Python编程语言之上的一种快速,强大,灵活且易于使用的开源数据分析和处理工具,它含有使数据清洗和分析⼯ 作变得更快更简单的数据结构和操作⼯具.pandas经常和其它⼯具⼀同使⽤,如数值计算⼯具NumPy和SciPy,分析库statsmodels和scikit-learn,和数据可视化库matplotlib等. pandas是基于Num…