交叉熵代价函数 machine learning算法中用得很多的交叉熵代价函数. 1.从方差代价函数说起 代价函数经常用方差代价函数(即采用均方误差MSE),比如对于一个神经元(单输入单输出,sigmoid函数),定义其代价函数为: 其中y是我们期望的输出,a为神经元的实际输出[ a=σ(z), where z=wx+b ]. 在训练神经网络过程中,我们通过梯度下降算法来更新w和b,因此需要计算代价函数对w和b的导数: 然后更新w.b: w <—— w - η* ∂C/∂w = w - η *…
1. Sigmod 函数 1.1 函数性质以及优点 其实logistic函数也就是经常说的sigmoid函数,它的几何形状也就是一条sigmoid曲线(S型曲线).               其中z是一个线性组合,比如z可以等于:b + w1*x1 + w2*x2.通过代入很大的正数或很小的负数到g(z)函数中可知,其结果趋近于0或1 A logistic function or logistic curve is a common “S” shape (sigmoid curve). 也就是…
LR采用的Sigmoid函数与最大熵(ME) 的关系 从ME到LR 先直接给出最大熵模型的一般形式,后面再给出具体的推导过程. \[\begin{align*} P_w(y|x) &= \dfrac{1}{Z_w(x)}\exp\left(\sum_{i=1}^{n}w_if_i(x,y)\right)\\ \mbox{where } Z_w(x) &= \sum_y\exp\left(\sum_{i=1}^nw_if_i(x,y)\right) \end{align*}\] 下面我们只考…
在神经网络中,经常用到sigmoid函数,y = 1 / (1+e-x) 作为下一级神经元的激活函数,x也就是WX(下文,W以θ符号代替)矩阵计算结果. 这个函数通常用在进行分类,通常分为1或0的逻辑分类,所以又叫logistic回归. 常规常规情况下,我们使用的损失函数是 j(θ) = 1 / 2n * ∑(hθ(x) - y) , hθ(x)  也就是激活函数(或hypothesis函数),y是样本结果数据.在大部分情况下,这是通用的.以向量来看,空间点Hθ(x)和Y距离最小化. 但是,由于…
(手机的颜色,大小,用户体验来加权统计总体的值)极大似然估计MLE 1.Logistic回归 Logistic regression (逻辑回归),是一种分类方法,用于二分类问题(即输出只有两种).如用于广告预测,也就是根据某广告被用户点击的可能性,把最可能被用户点击的广告摆在用户能看到的地方,结果是用户要么点击要么不点击. 通常两类使用类别标号0和1表示,0表示不发生,1表示发生. 问题引入 例如:有100个手机,其中有30个是你喜欢的,70个是不喜欢的.现预测你对第101个手机的喜好.这是一…
Sigmoid函数是一个S型函数. Sigmoid函数的数学公式为: 它是常微分方程 的一个解. Sigmoid函数具有如下基本性质: 定义域为 值域为, 为有界函数 函数在定义域内为连续和光滑函数 函数的导数为 不定积分为, 为常数 由于Sigmoid函数所具有的性质, 它常和单位阶跃函数用于构造人工神经网络; 另外心理学中的学习曲线的形状也和Sigmoid函数比较类似. …
本笔记源于CDA-DSC课程,由常国珍老师主讲.该训练营第一期为风控主题,培训内容十分紧凑,非常好,推荐:CDA数据科学家训练营 ---------------------------------- 一.logit值的来源 逻辑回归一般将因变量二分类变量的0-1转变为频率[0,1],变成odds(优势比,[0,+∞]),然后log一下成为Logit值([-∞,+∞]) 优势比就是:odds=P(y=1)/P(y=0) logit值:logit=log(odds) 什么是sigmoid函数? 先定…
##Logstic回归采用sigmoid函数的原因(sigmoid函数能表示二项分布概率的原因) sigmoid函数: ![](http://images2017.cnblogs.com/blog/1330912/201802/1330912-20180206134900638-2098675329.jpg) 直觉上,采用sigmoid函数来模拟(0, 1)段函数是因为sigmoid函数接近(0, 1)分段函数且连续可导(即数学性质好). ###从分布的角度进行理解 **指数族分布**: ![]…
import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import random #sigmoid函数定义def sigmoid(x): # print('sigmoid:',x,1.0 / (1+math.exp(-x))) return 1.0 / (1+ np.exp(-x))#模拟数据x = [-2,6,-2,7,-3,3,0,8,1,10,2,12,2,5,3,6,4,5,2,15,1,1…
0 - 定义 $Sigmoid$函数是一个在生物学中常见的S型函数,也称为$S$型生长曲线.在信息科学中,由于其单增以及反函数单增等性质,$Sigmoid$函数常被用作神经网络的阈值函数,将变量映射到0,1之间. 其曲线如下图: 1 - 导数 $$\begin{align*}sigmoid^{'}(x)&=(\frac{1}{1+e^{-x}})^{'} \\&=\frac{1}{1+e^{-x}}e^{-x}(-1)\\&=\frac{e^{-x}}{(1+e^{-x})^2}\…