TensorFlow LSTM 注意力机制图解】的更多相关文章

TensorFlow LSTM Attention 机制图解 深度学习的最新趋势是注意力机制.在接受采访时,现任OpenAI研究主管的Ilya Sutskever提到,注意力机制是最令人兴奋的进步之一,他们在这里进行投入.听起来令人兴奋但是什么是注意机制? 基于人类视觉注意机制,神经网络中的注意机制非常松散.人的视觉注意力得到了很好的研究,虽然存在着不同的模式,但它们基本上都是以"低分辨率"感知周围的图像,以"高分辨率"的方式集中在图像的某个区域,然后随着时间的推移…
基本概念 机器翻译和语音识别是最早开展的两项人工智能研究.今天也取得了最显著的商业成果. 早先的机器翻译实际脱胎于电子词典,能力更擅长于词或者短语的翻译.那时候的翻译通常会将一句话打断为一系列的片段,随后通过复杂的程序逻辑对每一个片段进行翻译,最终组合在一起.所得到的翻译结果应当说似是而非,最大的问题是可读性和连贯性非常差. 实际从机器学习的观点来讲,这种翻译方式,也不符合人类在做语言翻译时所做的动作.其实以神经网络为代表的机器学习,更多的都是在"模仿"人类的行为习惯. 一名职业翻译通…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www.showmeai.tech/article-detail/242 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为斯坦福CS224n<自然语言处理与深度学习(Natural Language Processing with Deep Learning)>的全套学习笔记,对应的课程视频可以在 这里 查看…
这篇文章整理有关注意力机制(Attention Mechanism )的知识,主要涉及以下几点内容: 1.注意力机制是为了解决什么问题而提出来的? 2.软性注意力机制的数学原理: 3.软性注意力机制.Encoder-Decoder框架与Seq2Seq 4.自注意力模型的原理. 一.注意力机制可以解决什么问题? 神经网络中的注意力机制(Attention Mechanism)是在计算能力有限的情况下,将计算资源分配给更重要的任务,同时解决信息超载问题的一种资源分配方案.在神经网络学习中,一般而言模…
本文转自:https://zhuanlan.zhihu.com/p/27238630 在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下tensorflow的数据读取机制,文章的最后还会给出实战代码以供参考. 一.tensorflow读取机制图解 首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示: 假设我们的…
一.基础模型 假设要翻译下面这句话: "简将要在9月访问中国" 正确的翻译结果应该是: "Jane is visiting China in September" 在这个例子中输入数据是10个中文汉字,输出为6个英文单词,\(T_x\)和\(T_y\)数量不一致,这就需要用到序列到序列的RNN模型. ​ 类似的例子还有看图说话: 只需要将encoder部分用一个CNN模型替换就可以了,比如AlexNet,就可以得到"一只(可爱的)猫躺在楼梯上"…
来源商业新知网,原标题:深入理解BERT Transformer ,不仅仅是注意力机制 BERT是google最近提出的一个自然语言处理模型,它在许多任务 检测上表现非常好. 如:问答.自然语言推断和释义而且它是开源的.因此在社区中非常流行. 下图展示了不同模型的GLUE基准测试分数(不同NLP评估任务的平均得分)变化过程. 尽管目前还不清楚是否所有的GLUE任务都非常有意义,但是基于Trandformer编码器的通用模型(Open-GPT.BERT.BigBird),在一年内缩小了任务专用模型…
在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下tensorflow的数据读取机制,文章的最后还会给出实战代码以供参考. 一.tensorflow读取机制图解 首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示: 假设我们的硬盘中有一个图片数据集0001.jpg,0002.jpg,0003.jpg……我们只需…
在学习TensorFlow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合适的学习材料.今天这篇文章就以图片的形式,用最简单的语言,为大家详细解释一下TensorFlow的数据读取机制,文章的最后还会给出实战代码以供参考. TensorFlow读取机制图解 首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取数据的过程可以用下图来表示: 假设我们的硬盘中有一个图片数据集0001.jpg,0002.jpg,0003.jpg--我们只需要把…
在碎片化阅读充斥眼球的时代,越来越少的人会去关注每篇论文背后的探索和思考. 在这个栏目里,你会快速 get 每篇精选论文的亮点和痛点,时刻紧跟 AI 前沿成果. 点击本文底部的「阅读原文」即刻加入社区,查看更多最新论文推荐. 这是 PaperDaily 的第 71 篇文章 本期推荐的论文笔记来自 PaperWeekly 社区用户 @jamiechoi.本文主要讨论自适应的注意力机制在 Image Caption 中的应用.作者提出了带有视觉标记的自适应 Attention 模型,在每一个 tim…
前面阐述注意力理论知识,后面简单描述PyTorch利用注意力实现机器翻译 Effective Approaches to Attention-based Neural Machine Translation 简介 Attention介绍 在翻译的时候,选择性的选择一些重要信息.详情看这篇文章 . 本着简单和有效的原则,本论文提出了两种注意力机制. Global 每次翻译时,都选择关注所有的单词.和Bahdanau的方式 有点相似,但是更简单些.简单原理介绍. Local 每次翻译时,只选择关注一…
原文地址: https://zhuanlan.zhihu.com/p/27238630 何之源 ​ 深度学习(Deep Learning) 话题的优秀回答者       ------------------------------------------------------------------------------------------------------ 在学习tensorflow的过程中,有很多小伙伴反映读取数据这一块很难理解.确实这一块官方的教程比较简略,网上也找不到什么合…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/ ,学习更多的机器学习.深度学习的知识! 在这篇文章中,我们将解决自然语言处理(具体是指问答)中最具挑战性但最有趣的问题之一.我们将在Tensorflow中实现Google的QANet.就像它的机器翻译对应的Transformer网络一样,QANet根本不使用RNN,这使得训练/测试更快. 我假设你已经掌握了Python和Tensorflow的一些知识. Question Answering是计算机科学…
第三周 序列模型和注意力机制(Sequence models & Attention mechanism) 3.1 序列结构的各种序列(Various sequence to sequence architectures) 首先,我们先建立一个网络,这个网络叫做编码网络(encoder network)(上图编号 1 所示),它是一个 RNN 的结构, RNN 的单元可以是 GRU 也可以是 LSTM.每次只向该网络中输入一个法语单词,将输入序列接收完毕后,这个 RNN 网络会输出一个向量来代表…
注意力机制之Attention Augmented Convolutional Networks 原始链接:https://www.yuque.com/lart/papers/aaconv 核心内容 We propose to augment convolutional operators with this self-attention mechanism by concatenating convolutional feature maps with a set of feature map…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/35 本文地址:http://www.showmeai.tech/article-detail/227 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为吴恩达老师<深度学习专业课程>学习与总结整理所得,对应的课程视频可以在这里查看. 引言 在ShowMeAI前一篇文章 自然语言处理与词嵌入 中我们对以下内容进行了介绍: 词嵌入与迁移学习/…
论文提出细粒度分类解决方案CAP,通过上下文感知的注意力机制来帮助模型发现细微的特征变化.除了像素级别的注意力机制,还有区域级别的注意力机制以及局部特征编码方法,与以往的视觉方案很不同,值得一看 来源:晓飞的算法工程笔记 公众号 论文: Context-aware Attentional Pooling (CAP) for Fine-grained Visual Classification 论文地址:https://arxiv.org/abs/2101.06635 论文代码:https://g…
Bi-LSTM(Attention) @ 目录 Bi-LSTM(Attention) 1.理论 1.1 文本分类和预测(翻译) 1.2 注意力模型 1.2.1 Attention模型 1.2.2 Bi-LSTM(Attention)模型结构 2.实验 2.1 实验步骤 2.2 算法模型 1.理论 1.1 文本分类和预测(翻译) 文本分类的输入处理和预测(翻译)不同: 预测(翻译)通常用eye()把每个输入向量转换为one-hot向量, 但文本分类模型通常用Embedding初始化一个嵌入矩阵用来…
注意力机制(Attention Mechanism)在自然语言处理中的应用 本文转自:http://www.cnblogs.com/robert-dlut/p/5952032.html  近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了最近神经网络研究的一个热点,本人最近也学习了一些基于attention机制的神经网络在自然语言处理(NLP)领域的论文,现在来对attention在NLP中的应用进行一个总结,和大家一起分…
注意力机制(Attention Mechanism)在自然语言处理中的应用 近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了最近神经网络研究的一个热点,本人最近也学习了一些基于attention机制的神经网络在自然语言处理(NLP)领域的论文,现在来对attention在NLP中的应用进行一个总结,和大家一起分享. 1 Attention研究进展 Attention机制最早是在视觉图像领域提出来的,应该是在九几年思想就提…
自然语言处理中的自注意力机制(Self-attention Mechanism) 近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中,之前我对早期注意力机制进行过一些学习总结(可见http://www.cnblogs.com/robert-dlut/p/5952032.html).随着注意力机制的深入研究,各式各样的attention被研究者们提出.在2017年6月google机器翻译团队在arXiv上放出的<Attention is all yo…
简介 TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人. 文章包括一下几个部分: 1.为什么要尝试做这个项目? 2.为什么选取了这个模型? 3.模型的数据从哪里来? 4.模型的优化过程? 5.项目可以进一步提升的方向. 对于以比特币为首的数字货币近期的表现,只能用疯狂来形容.来自比特币交易平台的最新价格行情显示,就在此前一天,比特币盘中最高价格达到29838.5元,距离3万元大关仅有咫尺之遥.比特币最近火热的行情,…
前言 本系列教程为pytorch官网文档翻译.本文对应官网地址:https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html 系列教程总目录传送门:我是一个传送门 本系列教程对应的 jupyter notebook 可以在我的Github仓库下载: 下载地址:https://github.com/Holy-Shine/Pytorch-notebook 本教程我们将会搭建一个网络来将法语翻译成英语. [KE…
近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中.随着注意力机制的深入研究,各式各样的attention被研究者们提出,如单个.多个.交互式等等.去年6月,google机器翻译团队在arXiv上的<Attention is all you need>论文受到了大家广泛关注,其中,他们提出的自注意力(self-attention)机制和多头(multi-head)机制也开始成为神经网络attention的研究热点,在各个任务上也取得了不错的效果.…
十图详解tensorflow数据读取机制(附代码) - 何之源的文章 - 知乎 https://zhuanlan.zhihu.com/p/27238630…
Tensorflow[LSTM]   0.背景 通过对<tensorflow machine learning cookbook>第9章第3节"implementing_lstm"进行阅读,发现如下形式可以很方便的进行训练和预测,通过类进行定义,并利用了tf中的变量重用的能力,使得在训练阶段模型的许多变量,比如权重等,能够直接用在预测阶段.十分方便,不需要自己去做一些权重复制等事情.这里只是简单记录下这一小节的源码中几个概念性的地方. # 定义LSTM模型 class LS…
1 基础模型(Basic models) 一个机器翻译的例子,比如把法语翻译成英语,如何构建一个神经网络来解决这个问题呢? 首先用RNN构建一个encoder,对法语进行编码,得到一系列特征 然后用RNN构建一个decoder,将编码后的特征信息,解码成英语,以此来生成对应的英语翻译 一个图像生成字幕的例子 首先用CNN构建一个encoder,对图像进行编码,得到一系列特征 然后用RNN构建一个decoder,将编码后的特征信息,解码成文本,以此来生成对图像的字幕描述 2 选择最可能的句子(Pi…
近年来,深度学习的研究越来越深入,在各个领域也都获得了不少突破性的进展.基于注意力(attention)机制的神经网络成为了最近神经网络研究的一个热点,下面是一些基于attention机制的神经网络在自然语言处理(NLP)领域的论文,现在来对attention在NLP中的应用进行一个总结,和大家一起分享. 1 Attention研究进展 Attention机制最早是在视觉图像领域提出来的,应该是在九几年思想就提出来了,但是真正火起来应该算是google mind团队的这篇论文<Recurrent…
近年来,注意力(Attention)机制被广泛应用到基于深度学习的自然语言处理(NLP)各个任务中.随着注意力机制的深入研究,各式各样的attention被研究者们提出.在2017年6月google机器翻译团队在arXiv上放出的<Attention is all you need>论文受到了大家广泛关注,自注意力(self-attention)机制开始成为神经网络attention的研究热点,在各个任务上也取得了不错的效果.对这篇论文中的self-attention以及一些相关工作进行了学习…
参考: https://zhuanlan.zhihu.com/p/51623339 https://arxiv.org/abs/1706.06978 注意力机制顾名思义,就是模型在预测的时候,对用户不同行为的注意力是不一样的,“相关”的行为历史看重一些,“不相关”的历史甚至可以忽略.那么这样的思想反应到模型中也是直观的. 如果按照之前的做法,我们会一碗水端平的考虑所有行为记录的影响,对应到模型中就是我们会用一个average pooling层把用户交互过的所有商品的embedding vecto…